#### SOLEBURY TOWNSHIP BOARD OF SUPERVISORS February 20, 2024 – 6:00 P.M. Solebury Township Hall/Virtual - Hybrid Meeting MEETING MINUTES

Attendance: Mark Baum Baicker, Chair, Hanna Howe, Vice-Chair, Christy Cheever, John S. Francis, Christopher Garges, Township Manager, Michele Blood, Assistant Township Manager, and Catherine Cataldi, Secretary. Mark L. Freed, Township Solicitor, Curtis J. Genner, Jr., P.E., Township Engineer and Mark Roth, Township Traffic Engineer were also in attendance. Absent: Kevin Morrissey

The recording device was turned on.

#### I. The meeting was called to order followed by the Pledge of Allegiance.

#### II. Approval of Bills Payable – February 1, 2024 & February 15, 2024

Res. 2024-39 – Upon a motion by Ms. Howe, seconded by Mr. Francis, the list of Bills Payable dated February 1, 2024 & February 15, 2024 were unanimously approved as prepared and posted.

III. Approval of Meeting Minutes – February 6, 2024

Res. 2024-40 – Upon a motion by Mr. Francis, seconded by Ms. Howe, the Minutes of the February 6, meeting were unanimously approved as prepared and posted.

#### IV. Announcements / Resignations / Appointments

#### **Executive Session**

Mr. Baum Baicker announced that an Executive Session was held directly prior to the Board of Supervisors meeting discussing a Legal Matter.

#### V. Supervisor Comment – No Supervisor Comment

#### VI. Subdivision/Land Development

## Subdivision/Land Development – Natalie Hamill & Josh Perlsweig (3211 & 3175 Sugan Road – TMP #'s 41-013- 046 & 41-022-015-001)

The applicants, Natalie Hamill & Josh Perlsweig proposed to redevelop an existing residential lot for use as an accessory farm stand and cooking school to the adjacent property and consolidation of both lots.

A motion was made by Gretchen Rice and seconded by Amishi Castello to recommend conditional approval of the subdivision (lot consolidation) and land development project #23-609, subject to all comments and recommendations in the Wynn Associates memorandum dated January 25, 2024, Simone Collins memorandum dated February 7, 2024, McMahon Associates memorandum dated January 25, 2024 and Solebury Township Zoning Officer memorandum dated January 25, 2024, and subject to Board consideration of fee in lieu of requested waivers.

The applicants, Natalie Hamill & Josh Perlsweig, were present with counsel, Edward F. Murphy, Esquire and Engineer, Sharon Dotts, Gilmore & Associates, Inc.

Mr. Freed and Mr. Genner offered an overview of the project and process leading up to the Board meeting. Mr. Murphy and Ms. Dotts offered an overview of the requested changes and requirements set by Pennsylvania Department of Transportation (PennDOT).

Mark Schmuckler, resident, commented on discussions held at the February 12, 2024 Planning Commission meeting, including PennDOT's decision and proposed changes. Mr. Schmuckler expressed interest in an open discussion with the Planning Commission and the Board of Supervisors to review alternative solutions. Mr. Schumuckler questioned whether Land Trust of Bucks County agreed to the farm lane and the definition of farm lane used in this application.

Discussion ensued between the Board of Supervisors, Mr. Freed, Mr. Schmuckler and Mr. Roth regarding the Subdivision and Land Development process, the conditional approval, PennDOT's requirements, PennDOT's decision, the Conservation Easement, the farm lane and minimum use driveway.

Res. 2024-41 – Upon a motion by Mr. Baum Baicker, seconded by Mr. Francis, it was unanimously agreed to approve the conditional approval of the subdivision (lot consolidation) and land development project #23-609, subject to all comments and recommendations in the Wynn Associates memorandum dated January 25, 2024, Simone Collins memorandum dated February 7, 2024, McMahon Associates memorandum dated January 25, 2024.

#### VII. Presentation

#### EAM Associates, Inc. – Building Energy Audit

Frank Swol, Vice President of EAM Associates, Inc. presented an overview of the Energy Audit (Copy of which is attached). Highlights of the presentation included: Executive Summary; Introductions; Audit Team; Envelope of Building; Area Identification; Diagnostic Testing; Building Analysis; Findings & Recommendation; and Envelope Air Sealing.

#### VIII. Public Hearing

<u>DeMasi Conditional Use – TMP # 41-036-020, 3515 Windy Bush Road – Board Decision</u> The public hearing for the DeMasi Conditional Use application was held at the January 16, 2024 Board of Supervisors meeting. Following the close of hearing the Board agreed to table any decision until the February 20, 2024 Board of Supervisors meeting to allow additional time to consider the information provided during the hearing.

Res. 2024-42 – Upon a motion by Mr. Baum Baicker, seconded by Ms. Howe, it was unanimously agreed to approve the Conditional Use of the utilization of a portion of the residence on the Applicant's Property as a Bed-and-Breakfast/Small Short-Term Lodging Facility with a den, a bathroom and a single bedroom to be commercially offered and used for temporary lodging of transient guests per the following conditions, which were cited by the Township Solicitor:

- a. The conditional use approval does not include approval of any new construction and there will be no physical changes to the Property.
- b. Only the previously identified portion of the residence on the Applicant's Property designated for use as a Bed-and-Breakfast/Small Short-Term Lodging Facility shall be used for the purpose of the Bed-and-Breakfast/Small Short-Term Lodging Facility.
- c. The living quarters for the Applicant shall have its own bathroom. It may also have its own cooking facilities.
- d. Housekeeping services shall be provided to all guests staying on the Property.

- e. No separate kitchen or cooking facilities shall be allowed in the addition to the residence serving as the Bed-and-Breakfast/Small Short-Term Lodging Facility.
- f. The Applicant shall not provide any food services to guests.
- g. There shall be no banquet, catering or event use of the Property as such term is defined in Township Ordinance ch. 27, § 27-202.
- h. All guests of the facility must register with the Applicant and the Applicant shall keep accurate registration records.
- i. There will be no more than two (2) adult guests and four (4) total guests of any age at the facility at any one time. The term "adult" as used herein refers to any person 18 years of age or older.
- j. The Applicant shall comply with all requirements of Township Ordinance ch. 27, § 27-2602.1.00, pertaining to special principal use regulations.
- k. The Applicant shall comply with all requirements as identified in the definition of Bed-and-Breakfast/Small Short-Term Lodging Facility per Township Ordinance ch. 27, § 27-202.
- I. The Applicant shall comply with all requirements and conditions in the Zoning Review Letter dated December 19, 2023.
- m. The Applicant shall comply with all conditions of the ZHB Decision dated December 19, 2023.
- n. The Applicant must at all times maintain a valid County Department of Health septic permit.
- o. Signage for the facility shall comply with all Township requirements.

## <u>Historical Architectural Review Board – Certificate of Appropriateness – Jeffrey Bach (TMP # 41-002-051-</u> 0C1, 3612 Aquetong Road)

The applicant, Jeffrey Bach, expressed interest in replacing the siding of the residence with a historically approved Hardie Board Siding.

Upon a Motion by Scott Minnucci, seconded by Patrick Strzelec, it was agreed to recommend issuance of a Certificate of Appropriateness to Jeffrey Bach, 3612 Aquetong Road, for the removal of existing siding on front of the home to be replaced with Hardie Board Siding with the following specifications:

- 1. The type of siding shall be Hardie Plan in Select Cedar Mill
- 2. There shall be vertical battens of the same color and approximately 1 ½ to 2 inches.
- 3. Any trim that needs to be removed shall be replaced

Res. 2024-43 – Upon a motion by Mr. Baum Baicker, seconded by Ms. Howe, it was unanimously agreed to authorize the Certificate of Appropriateness to TMP # 41-002-051-0C1, 3612 Aquetong Road, as per the recommendations from the Historical Architectural Review Board. Issuance of the Certificate of Appropriateness does not relieve the applicant from obtaining any and all applicable permits prior to commencement of work.

#### IX. New Business

Short Term Rental Ordinance Amendment – Authorize to Advertise

Res. 2024-44 – Upon a motion by Mr. Baum Baicker, seconded by Ms. Howe it was unanimously agreed to authorize Township Administration to advertise the Short-Term Rental Ordinance Amendment.

#### Solebury Gateway Trail – Bid Award

The Bids for the Solebury Gateway Trail project were received and opened via PennBID. The Township was met with a great interest in the project with 12 contractors submitting bids.

Res. 2024-45 – Upon a motion by Mr. Francis, seconded by Ms. Howe, it was unanimously agreed to award the Bid for the Solebury Gateway Trail to the qualified low bidder, Ply-Mar Construction Co., Inc.

#### Authorize Master Plan Request for Proposals – Route 202 Property

Res. 2024-46 – Upon a motion by Mr. Baum Baicker, seconded by Mr. Francis, it was unanimously agreed to authorize the Route 202 Property Master Plan Request for Proposals.

#### Electronic Waste Recycling – Authorize to Hold Event

Res. 2024-47- Upon a motion by Mr. Baum Baicker, seconded by Mr. Francis, it was unanimously agreed to authorize the Environmental Advisory Council to host an electronics recycling event at the New Hope Solebury High School Campus on March 23, 2024 from 9:00 am – 12:00 pm. The Township will cover the cost of the event and seek reimbursement from Bucks County. Residents will be responsible for fees for individual devices such as TV's, etc. as determined by the vendor, eForce Recycling.

## Authorize Solicitors to Draft Revisions to Township Ordinance Regarding Agricultural Uses and Permitting Requirements

The Farm Committee recommends the Board of Supervisors authorize the drafting of an ordinance to revise the zoning ordinance to permit and create provisions for value added agricultural accessory uses. The Farm Committee also recommends the Board of Supervisors authorize the drafting of ordinance (and possibly fee schedule) revisions that would streamline stormwater management permitting for agricultural uses.

Res. 2024-48 – Upon a motion by Ms. Howe, seconded by Mr. Baum Baicker, it was unanimously agreed to authorize the Township Solicitors to draft revisions to Township Ordinance regarding Agricultural Uses and Permitting Requirements.

#### X. Public Comment

#### XI. Adjournment

The meeting was adjourned at 8:02 pm.

Respectfully submitted, Catherine Cataldi, Secretary

# Energy Audit Solebury Township Municipal Building Solebury, PA



Prepared for: Christopher Garges – Township Manager Solebury Township, PA 3092 Sugan Road Solebury, PA 18963 September 29, 2023



www.eamenergy.com

## **Table of Contents**

| • | Executive Summary                                       | 1   |
|---|---------------------------------------------------------|-----|
| • | Introduction                                            | 2   |
| • | Audit Team & Test Equipment Used                        | 3   |
| • | Building Floor Plan                                     | 4   |
| • |                                                         |     |
| • | WUFI Energy Model Existing vs. Proposed Design Reports  | 27  |
|   | "Before" Existing Conditions Reports                    | 29  |
|   | <ul> <li>"After" Proposed Post-Rehab Reports</li> </ul> | 58  |
| • | Projected Energy Savings Tables                         | 87  |
| • | Refined EIA CBECS 2018 Energy Intensities Table         | 91  |
| • | Energy Audit Findings & Recommendations                 | 97  |
| • | Field Inspection Photo Record*                          | 105 |

\*Photo Record is internally numbered from Page 1 to 203





#### **Executive Summary:**

EAM Associates performed an energy audit at the Solebury Municipal Building, located at 3092 Sugan Road, Solebury, PA, on May 19<sup>th</sup> and June 30<sup>th</sup> of 2023. This work was performed to identify opportunities for energy savings, and increased comfort for the occupants.

The ultimate end-users of the data and conclusions obtained from the audit will be the principal stakeholders listed below:

#### Owner/Developer

SOLEBURY TOWNSHIP, 3092 SUGAN ROAD, SOLEBURY, PA, 18963

#### Sustainability Consultant

SANDERSON SUSTAINABLE DESIGN, NEW HOPE, PA 18938

#### **Energy Consultant**

EAM ASSOCIATES INC, 2640 ROUTE 70 BUILDING 1B, MANASQUAN, NJ 08736



#### Introduction:

An energy audit at the Solebury Municipal Building, located at 3092 Sugan Road, in Solebury, PA, on May 19<sup>th</sup> and June 10<sup>th</sup> of 2023 intended to meet the criteria of an ASHRAE Level 2 energy audit. This report constitutes the findings of that audit, arrived at by means of the following major analysis components:

- Generation of energy models from architectural and engineering plans.
- Confirmation of building dimensions, constructions, and specifications via field inspections of the building. Field inspections included:
  - Walk-through survey of facility
  - Discussion with occupants and site operations staff about issues and potential areas for improvement
  - Identification of potential capital improvements for further study, and providing calculations of potential savings
  - o Blower door shell leakage testing
  - o Duct blaster leakage testing
  - Data collection of the thermal envelope, MEP, and all other energy use affecting characteristics and specifications of the home
  - o Infrared camera inspection
- Generation of a preliminary audit report immediately following the field inspections to inform the project teams' design process decisions during as early a stage as possible.
- Use of calibrated energy models to investigate a package of improvements that will increase energy efficiency and improve occupant comfort by addressing safety concerns and existing issues with the design and function of the building as a system.
- Generation of a set of recommended measures based on the above analysis, and completion of this detailed audit report for purposes of documenting the savings potential of those recommended measures.



#### Audit Team:

Frank Swol

- BPI Building Analyst, Envelope Professional, & Multifamily Building Professional
- RESNET QAD & HERS Rater

Charlie Goldgate

- BPI Building Analyst, Envelope Professional, & Multifamily Building Professional
- RESNET HERS Rater

Dillon Swol

- BPI Building Analyst & Envelope Professional
- RESNET QADD & HERS Rater

Dan Hayes

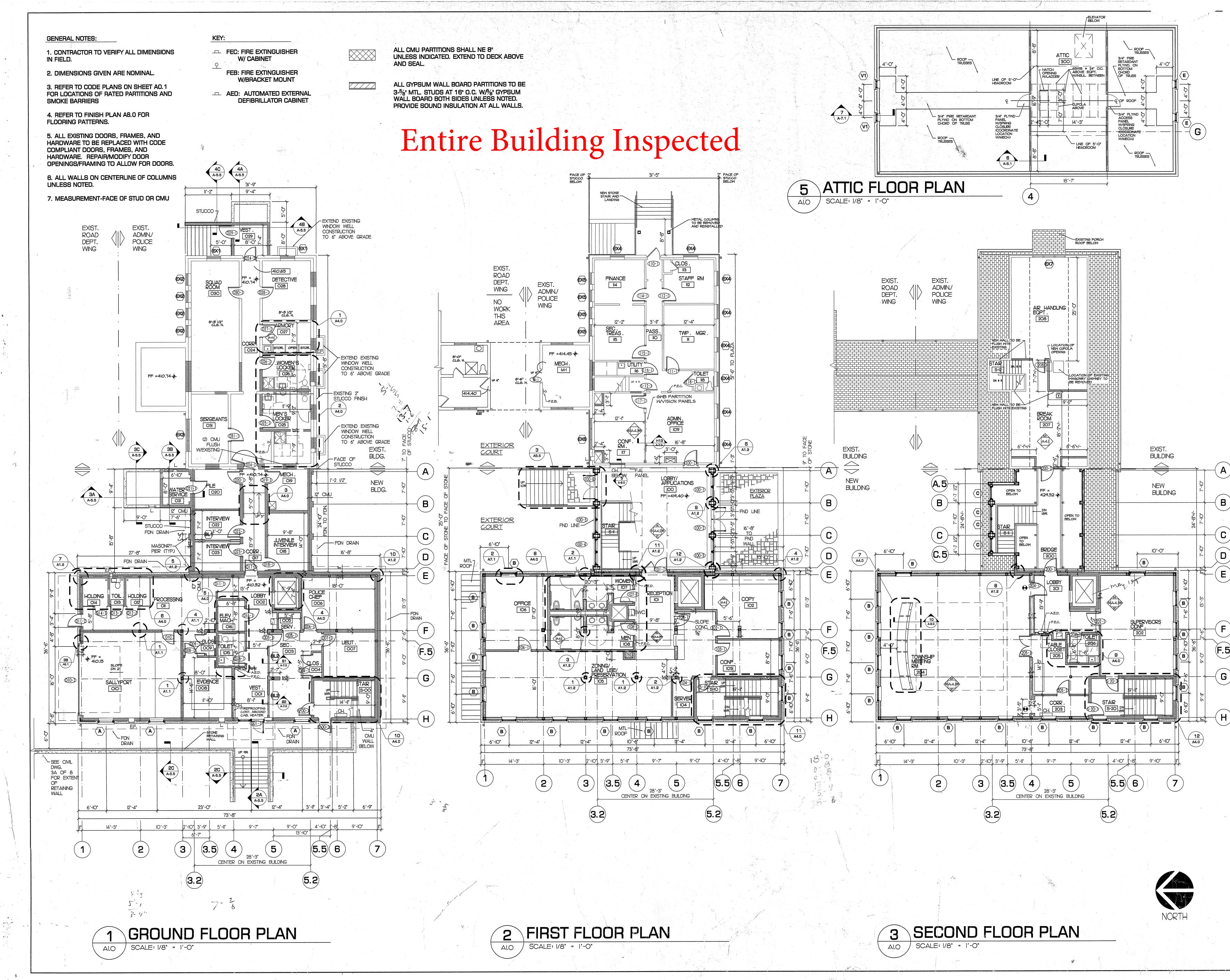
RESNET HERS Rater

Zach Newcomb

RESNET HERS Rater

#### **Test Equipment Used:**

- Energy Conservatory Digital Manometer DG-1000
- Energy Conservatory Series 3 Blower Door
- Energy Conservatory Series B Ductblaster
- Extech Moisture Meter MO210
- FLIR Series E8 Infrared Camera
- Cooper-Atkins Temperature/Humidity Thermistor SRH77A
- Alnor Flow Hood Model EBT731


#### **Energy Modeling Software Used:**

• WUFI Passive V 3.3.0.2

# **Building Floor Plan**



www.eamenergy.com



RONALD E. VAUGHN, AIA NJ LICENSE #03906 RONALD E. VAUGHN, AIA PA LICENSE #EX-3418 LOUIS J. DeLOSSO, AIA NJ LICENSE #09841 JEROME H. TAYLOR, AIA NJ LICENSE #07791 JOSEF P. BRUDER, AIA NJ LICENSE #11015 JEFFREY B. HILL, AIA NJ LICENSE #08937 THE VAUGHN **COLLABORATIVE** ARCHITECTURE PLANNING TERIOR I 42 WEST LAFAYETTE STREET TRENTON, NJ 08608 FAX:609-695-2867 \* TELE:609-695-7411 POST OFFICE BOX 354 WASHINGTON CROSSING, PA 1/977 TELE: 215-493-2701 NSHIP RENOVATIONS & ADDITIONS TO SOLEBURY MUNICPAL BUILDING 3092 SUGAN ROAD P.O. BOX 139 SOLEBURY, PA 18963 PRINT ISSUES DATE: REMARKS: 4/26/04 BID DOCUMENTS REVISIONS NO: DATE: REMARKS: DRAWING NAME FLOOR PLANS SCALE: AS NOTED DRAWING NO DRAWN BY: CHECKED BY: A1.0 COMMISSION NO. DATE:

# **Field Inspection Data**



www.eamenergy.com

## **Field Data Table of Contents**

| • | Area Identification              | 8   |
|---|----------------------------------|-----|
| • | Utility Data                     | 9   |
|   | Diagnostic Testing               |     |
| • | Envelope Summary                 | 11  |
| • | Lighting Schedule                | .12 |
| • | Lighting Calculation             | .13 |
|   | Equipment Schedule               |     |
| • | Air Testing Diagrams             | .15 |
| • | New Building Attic Plans         | .19 |
| • | Attic Envelope Deficiency Photos | .21 |



#### AREA IDENTIFICATION

| Project Information             |                     |
|---------------------------------|---------------------|
| Number of Building Types        | 1                   |
| Number of Building in Project   | 1                   |
| Number of Residences in Project | 0                   |
| Total Square Footage            | 13,988              |
| Building Information            | Building Type 1     |
| Building Type                   | Municipal           |
| Building Name/Nickname          | Administration Bldg |
| Number of Buildings             | 1                   |
| Number of Stories               | 3                   |
| Year(s) Built                   | 2004                |
| Building Areas (SQFT)           |                     |
| Lobby                           | 1157                |
| Public Restroom                 | 460                 |
| Mechanical Room                 | 970                 |
| Storage                         | 260                 |
| Community Kitchen               | 650                 |
| Community Room                  | 1544                |
| Office Space                    | 6403                |

| Propane           | Data        | Electric Data     |             |                   |             |  |  |  |
|-------------------|-------------|-------------------|-------------|-------------------|-------------|--|--|--|
| Usage Dates       | Gallons     | Usage Dates       | KBTUs       | Usage Dates       | KWH         |  |  |  |
| 2/27/22 - 2/6/23  | 9535.4      | 1/21/22 - 1/19/23 | 694438.7328 | 1/21/22 - 1/19/23 | 203520      |  |  |  |
| 2/11/21 - 2/26/22 | 9068.8      | 1/21/21 - 1/20/22 | 799805.616  | 1/21/21 - 1/20/22 | 234400      |  |  |  |
| Average gallons   | 9302.1      | Average           | 747122.1744 | Average           | 218960      |  |  |  |
| Kbtu/yr           | 851139.17   |                   |             |                   |             |  |  |  |
| BSMT CFA          | 4742        |                   |             |                   |             |  |  |  |
| 1F CFA            | 5006        | BSMT CFA          | 4742        | BSMT CFA          | 4742        |  |  |  |
| 2F CFA            | 4240        | 1F CFA            | 5006        | 1F CFA            | 5006        |  |  |  |
| PD Annex CFA      | 2682        | 2F CFA            | 4240        | 2F CFA            | 4240        |  |  |  |
| Total Area        | 16670       | Total Area        | 13988       | Total Area        | 13988       |  |  |  |
| kbtu/yr/sf        | 51.05813857 | kbtu/yr/sf        | 53.41165102 | kWh/yr/sf         | 15.65341721 |  |  |  |

Utility data provided to EAM by Solebury Township Staff

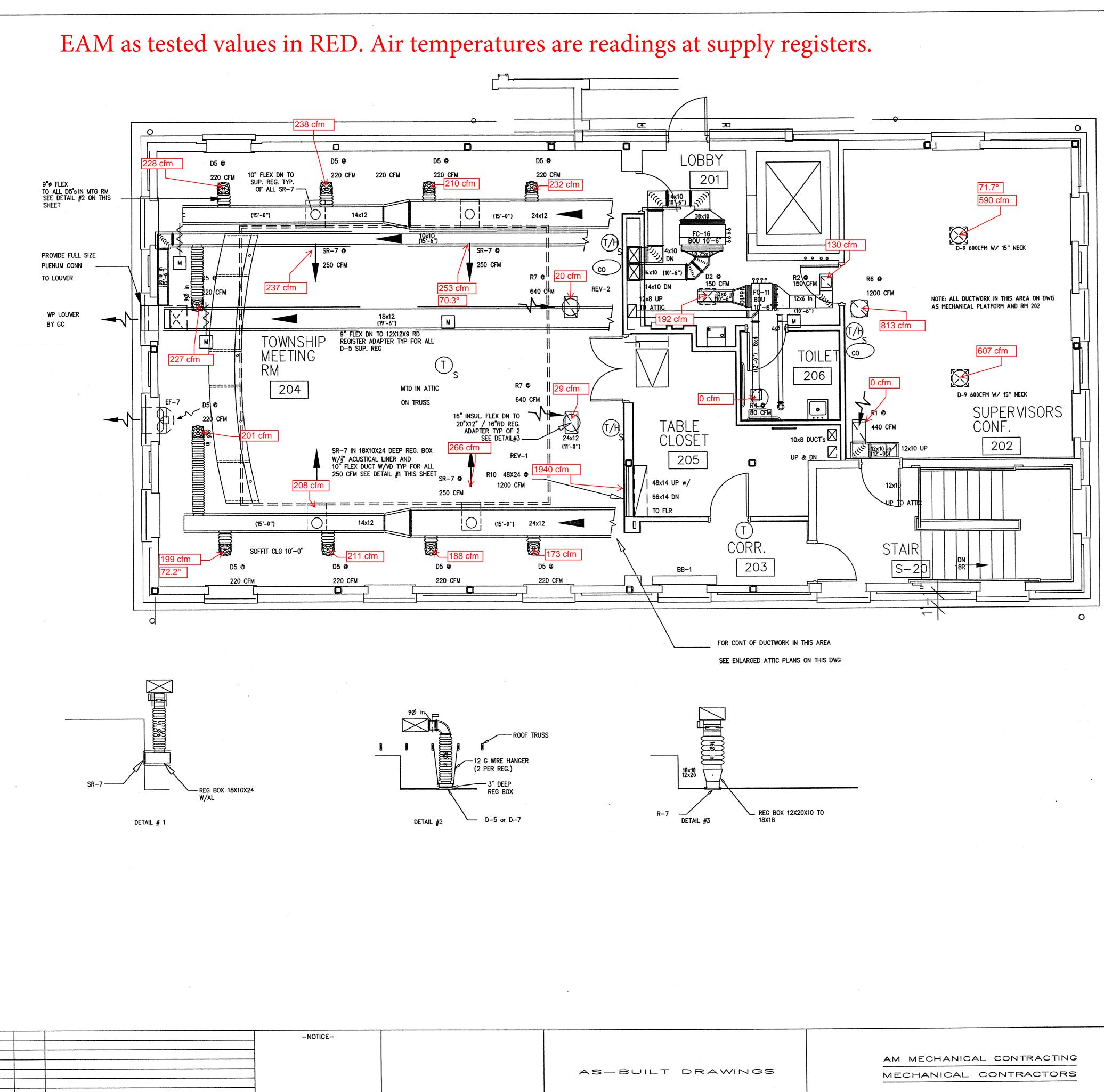
### **Diagnostic Testing**

|                          | Building Information              | Building Type 1                        |
|--------------------------|-----------------------------------|----------------------------------------|
| Testing Tupe             | Building Type                     | Municipal                              |
| Testing Type             | Building Name/Nickname            | Administration Bldg                    |
|                          | Sample Field Inspected Unit       | N/A                                    |
| Shell Leakage            | Blower Door (CFM50)               | 14,458                                 |
| Shell Leakage            | Blower Door (ACH50)               | 7.84                                   |
|                          | Duct Leakage to Outside (CFM25)   | N/A                                    |
| Duct Leakage             | Duct Leakage to Outside % CFA     | N/A                                    |
| Duct Leakage             | Total Duct Leakage (CFM25)        | See Air Testing Diagrams (Pages 15-18) |
|                          | Total Duct Leakage % CFA          | See Air Testing Diagrams (Pages 15-18) |
|                          | Bathroom Exhaust to Outside (CFM) | See Air Testing Diagrams (Pages 15-18) |
| <b>Exhaust Fan Flows</b> | Kitchen Exhaust to Outside (CFM)  | N/A                                    |
|                          | Laundry Exhaust to Outside (CFM)  | N/A                                    |

#### ENVELOPE SUMMARY

| Concered Ruilding (Freudland             |              |                               |               |                     |                |                  |                 |                                                          |               |                    |              |       |
|------------------------------------------|--------------|-------------------------------|---------------|---------------------|----------------|------------------|-----------------|----------------------------------------------------------|---------------|--------------------|--------------|-------|
| General Building/Envelope<br>Description | Steel Framed |                               |               |                     |                |                  |                 |                                                          |               |                    |              |       |
| Envelope Components                      | Measure?     | Construction Type/Description | Total R-value | Verification Method |                |                  |                 | Additional                                               | Notes         |                    |              |       |
| Above Grade Exterior Walls               | NO           | Metal 2x6 16" OC              | R-19          | As per plans        | RESNET Grad    | le 3             |                 |                                                          |               |                    |              |       |
| Floor Perimeter/Rim Joists               | NO           | Metal 2x6 16" OC              | R-19          | As per plans        | RESNET Grad    | le 3             |                 |                                                          |               |                    |              |       |
| Below Grade Walls                        | NO           | 12" Concrete                  | N/A           | As per plans        |                |                  |                 |                                                          |               |                    |              |       |
| Floor Above Unconditioned Space          | NO           | Wood 2x10 Joist 16" OC        | 0             | As per plans        |                |                  |                 |                                                          |               |                    |              |       |
| Slab On/Below Grade                      | NO           | 4" Concrete                   | 0             | As per plans        |                |                  |                 |                                                          |               |                    |              |       |
| Roof                                     | Yes          | Wood 2x10 Rafter 16" OC       | R-13          | As per plans        | RESNET Grad    | le 3             |                 |                                                          |               |                    |              |       |
| Ceilings to Unconditioned Attics         | Yes          | Wood 2x10 Joist 16" OC        | R-19          | As per plans        | RESNET Grad    | le 3             |                 |                                                          |               |                    |              |       |
| Wall to Unconditioned Space              | NO           | Metal 2x6 16" OC              | R-19          | As per plans        | RESNET Grad    | le 3             |                 |                                                          |               |                    |              |       |
|                                          |              |                               |               |                     | Typical Size   |                  |                 |                                                          |               |                    | Weather-     | Age   |
| Windows                                  | Measure?     | Window Type                   | Frame Type    | Condition           | (H x W)        | # of Panes       | Gas Filled      | <b>Glass Coating</b>                                     | U-value       | SHGC               | stripping    | (yrs) |
| Windows Type 1                           | YES          | Single Hung                   | Wood          | Poor to Fair        | 5.5' x 2.5'    | Double           | Air             | Low-E                                                    | 0.5           | 0.45               | Poor to Fair | r 20  |
| Windows Type 2                           | YES          | Single Hung                   | Wood          | Poor to Fair        | 5.5' x 7.5'    | Double           | Air             | Low-E                                                    | 0.5           | 0.45               | Poor to Fair | r 20  |
| Windows Type 3                           | YES          | Fixed                         | Wood          | Poor to Fair        | 3' x 3'        | Double           | Air             | Low-E                                                    | 0.5           | 0.45               | Poor to Fair | r 20  |
|                                          |              |                               |               |                     | Weather-       |                  |                 |                                                          |               |                    |              |       |
| Exterior Doors                           | Measure?     | Material                      | % Glazing     | Glazing Type        | stripping      | Qty.             |                 |                                                          |               |                    |              |       |
| Exit 1,2,4,5,6                           | Yes          | Steel-poly/Wood               | 0             | n/a                 | Poor           | 4                |                 |                                                          |               |                    |              |       |
| Exit 3,7,8                               | Yes          | Vinyl                         | 75            | Fized               | Poor           | 10               |                 |                                                          |               |                    |              |       |
| Air Infiltration                         | Measure?     | Location of Leakage           | Tightness     |                     |                |                  | Additi          | ional Notes                                              |               |                    |              |       |
| Windows                                  | NO           | Frame                         | High Leakage  |                     | Existing wind  | lows to be repla | ced with curre  | ent code low leaka                                       | age models (  | sealed to fr       | aming)       |       |
| Windows                                  | NO           | Moving Surfaces               | High Leakage  |                     |                |                  |                 |                                                          |               |                    |              |       |
| Exterior Doors                           | NO           | Frame                         | High Leakage  |                     |                | Existing Mea     | therstrinning f | or exterior doors                                        | to he replace | ed                 |              |       |
|                                          | YES          | Moving Surfaces               | High Leakage  |                     |                |                  | the stripping i | of exterior doors                                        |               | eu                 |              |       |
| Laundry Room                             | N/A          | Dryer Vent                    | N/A           |                     | Air Sealing Sc | one of Work to   | require sealing | of all accessible                                        | MFP and fra   | ming nenet         | rations      |       |
|                                          | N/A          | Exhaust Fans                  | N/A           |                     |                |                  | require seaming | g of all accessible                                      |               | ning peries        | .140115      |       |
|                                          | Yes          | Hatch Frame                   | High Leakage  |                     |                |                  |                 |                                                          |               |                    |              |       |
|                                          | Yes          | Hatch Door                    | High Leakage  |                     |                |                  |                 |                                                          |               |                    |              |       |
|                                          | YES          | Pipe Penetrations             | High Leakage  |                     |                |                  |                 |                                                          |               |                    |              |       |
| Attic/Roof                               | N/A          | Electrical Boxes              | N/A           |                     | Air Spaling Sc | one of Work to   | require sealing | g of all accessible                                      | MFP and fra   | aming penetrations |              |       |
| Atticy tool                              | YES          | Recessed Lights               | High Leakage  |                     |                |                  | require seaming | g of all accessible                                      |               | ning peries        | .14(10)15    |       |
|                                          | N/A          | Wall Caps                     | N/A           |                     |                |                  |                 | e sealing of all accessible MEP and framing penetrations |               |                    |              |       |
|                                          | YES          | Exhaust Fans                  | High Leakage  |                     |                |                  |                 |                                                          |               |                    |              |       |
|                                          | YES          | Open Chases                   | High Leakage  |                     |                |                  |                 |                                                          |               |                    |              |       |
|                                          | YES          | Pipe Penetrations             | High Leakage  |                     |                |                  |                 |                                                          |               |                    |              |       |
| Exterior Walls                           | Yes          | Exhaust Fans                  | High Leakage  |                     | Air Sealing Sc | one of Work to   | require sealin  | g of all accessible                                      | MEP and fra   | ming nenet         | rations      |       |
|                                          | NO           | Electrical Boxes              | High Leakage  |                     | All Sealing St |                  | require sealing | 5 of all accessible                                      |               | ning pene          | lations      |       |
|                                          | Yes          | Patio Doors                   | High Leakage  |                     |                |                  |                 |                                                          |               |                    |              |       |

### Lighting Schedule


Interior Lighting

|   | Locati                                          | on               |         | Exis                  | ting    |      |                 |                     | Ргоро        | sed     |      |                     |
|---|-------------------------------------------------|------------------|---------|-----------------------|---------|------|-----------------|---------------------|--------------|---------|------|---------------------|
|   | <b>Building Type</b> (from Area Identification) | Building Area    | Floor # | Fixture Type          | Wattage | Qty. | Control<br>Type | Fixture<br>Measure? | Fixture Type | Wattage | Qty. | Control<br>Measure? |
| 1 | Building Type 1                                 | Throughout       | 1,2,3   | Incandescent/ CFL/LED | 88      | 90   | None            | YES                 | LED          | 34      | 90   | None                |
| 2 | Building Type 1                                 | Throughout       | 1,2,3   | Incandescent/ CFL/LED | 58      | 78   | None            | YES                 | LED          | 34      | 83   | YES                 |
| 3 | Building Type 1                                 | Throughout       | 1,2,3   | Incandescent/ CFL/LED | 34      | 29   | None            | YES                 | LED          | 25      | 29   | Yes                 |
| 4 | Building Type 1                                 | Lobby, Town Hall | 2,3     | Incandescent/ CFL/LED | 300     | 9    | None            | YES                 | LED          | 27      | 9    | YES                 |
| 5 | Building Type 1                                 | Breakroom        | 3       | CFL                   | 150     | 1    | None            | Yes                 | LED          | 34      | 1    | YES                 |
| 6 | Building Type 1                                 | Exteriors        | 1       | CFL                   | 52      | 5    | None            | YES                 | LED          | 30      | 5    | YES                 |

|      | Solebury Township Administration Building Lighting Calculation |    |    |    |   |             |            |  |  |  |  |  |  |
|------|----------------------------------------------------------------|----|----|----|---|-------------|------------|--|--|--|--|--|--|
| Name |                                                                |    |    |    |   |             |            |  |  |  |  |  |  |
| A    | 88                                                             | 16 | 0  | 0  | 0 | 16          | 1408       |  |  |  |  |  |  |
| A1   | 77                                                             | 10 | 3  | 6  | 0 | 19          | 1463       |  |  |  |  |  |  |
| В    | 34                                                             | 9  | 6  | 0  | 0 | 15          | 510        |  |  |  |  |  |  |
| С    | 58                                                             | 4  | 3  | 6  | 5 | 18          | 1044       |  |  |  |  |  |  |
| D    | 60                                                             | 9  | 9  | 10 | 0 | 28          | 1680       |  |  |  |  |  |  |
| E    | 2                                                              | 7  | 6  | 7  | 0 | 20          | 40         |  |  |  |  |  |  |
| F    | 5                                                              | 4  | 1  | 0  | 0 | 5           | 25         |  |  |  |  |  |  |
| G    | 88                                                             | 6  | 2  | 1  | 0 | 9           | 792        |  |  |  |  |  |  |
| Н    | 88                                                             | 6  | 21 | 0  | 0 | 27          | 2376       |  |  |  |  |  |  |
| J    | 58                                                             | 4  | 0  | 4  | 0 | 8           | 464        |  |  |  |  |  |  |
| К    | 44                                                             | 0  | 0  | 12 | 0 | 12          | 528        |  |  |  |  |  |  |
| K1   | 68                                                             | 0  | 0  | 10 | 0 | 10          | 680        |  |  |  |  |  |  |
| L    | 88                                                             | 0  | 17 | 0  | 0 | 17          | 1496       |  |  |  |  |  |  |
| L1   | 88                                                             | 2  | 0  | 0  | 0 | 2           | 176        |  |  |  |  |  |  |
| М    | 52                                                             | 1  | 0  | 0  | 0 | 1           | 52         |  |  |  |  |  |  |
| N    | 60                                                             | 3  | 2  | 0  | 0 | 5           | 300        |  |  |  |  |  |  |
| Р    | 52                                                             | 4  | 1  | 0  | 0 | 6           | 312        |  |  |  |  |  |  |
| R    | 300                                                            | 0  | 0  | 4  | 0 | 4           | 1200       |  |  |  |  |  |  |
| S    | 300                                                            | 0  | 0  | 5  | 0 | 5           | 1500       |  |  |  |  |  |  |
| Т    | 40                                                             | 1  | 0  | 0  | 0 | 1           | 40         |  |  |  |  |  |  |
| U    | 150                                                            | 0  | 0  | 1  | 0 | 1           | 150        |  |  |  |  |  |  |
| V    | 58                                                             | 1  | 1  | 2  | 0 | 4           | 232        |  |  |  |  |  |  |
| W    | 58                                                             | 0  | 4  | 0  | 0 | 4           | 232        |  |  |  |  |  |  |
| Х    | 34                                                             | 0  | 1  | 0  | 0 | 1           | 34         |  |  |  |  |  |  |
| Y    | 12                                                             | 6  | 0  | 0  | 0 | 6           | 72         |  |  |  |  |  |  |
| Z    | 18                                                             | 0  | 1  | 0  | 0 | 1           | 18         |  |  |  |  |  |  |
|      |                                                                |    |    |    |   | Total Watts | 16824      |  |  |  |  |  |  |
|      |                                                                |    |    |    |   | Bldg CFA    | 13988      |  |  |  |  |  |  |
|      |                                                                |    |    |    |   | Watts/sf    | 1.20274521 |  |  |  |  |  |  |

### Equipment Schedule

|   | Location           | n                 |         |               | Existing Unit for Energy I       | Modeling  |      |            |
|---|--------------------|-------------------|---------|---------------|----------------------------------|-----------|------|------------|
|   | Equipment Type     | Building Area     | Floor # | Manufacturer  | Model Number                     | Fuel Type | Qty. | Age (yrs.) |
| 1 | Chiller            | Mechanical Closet | 1       | Trane         | CGAM (60 HZ)                     | Electric  | 1    | 2          |
| 2 | Boiler             | Mechanical Closet | 1       | Lochinvar     | KBN701                           | Propane   | 1    | 2          |
| 3 | CW/HW Fan Coils    | Throughout        | 1,2,3   | International | Average of Various Models        | Electric  | 18   | 20         |
| 4 | Domestic Hot Water | Mechanical Closet | 1       | Not Provided  | Electric Resistance Storage Tank | Electric  | 1    | 20         |
| 5 | ERV                | Mechanical Closet | 1,2     | Greenheck     | Average of Various Models        | Electric  | 3    | 20         |
| 6 | Exhaust Fans       | Bathrooms, Attic  | 1,2,3   | Various       | Average of Various Models        | Electric  | 7    | 20         |
| 7 | Refrigerator       | Break Rooms       | 2,3     | Various       | Average of Various Models        | Electric  | 2    | 20         |



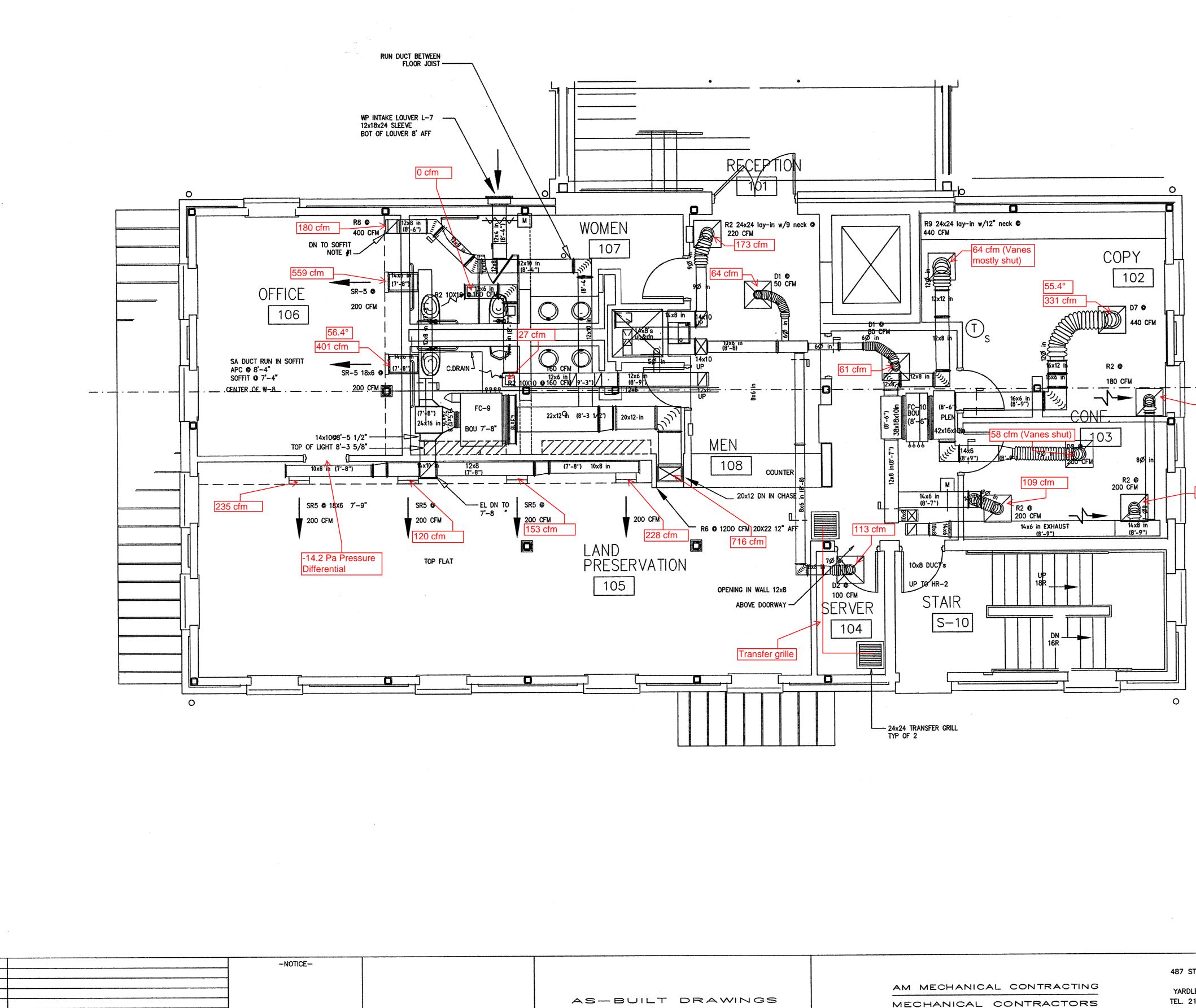
REVISION DATE

.

• '

**1** 1

s. -\*


REVISION

487 STONY HILL RD YARDLEY PA 19067 TEL. 215 321-7440 FAX.215 321-7045

| PROJECT NO DATE<br>12/14,<br>DEAMIN BY<br>DESIGNE<br>DUCS AND EQUIPMENT LAYOUT<br>HVAC DUCT AND EQUIPMENT LAYOUT |                            |
|------------------------------------------------------------------------------------------------------------------|----------------------------|
| PROJECT NO DATE                                                                                                  | /05                        |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  | -<br>-<br>-<br>-<br>-<br>- |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  | 4<br>                      |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |
|                                                                                                                  |                            |

normalities for

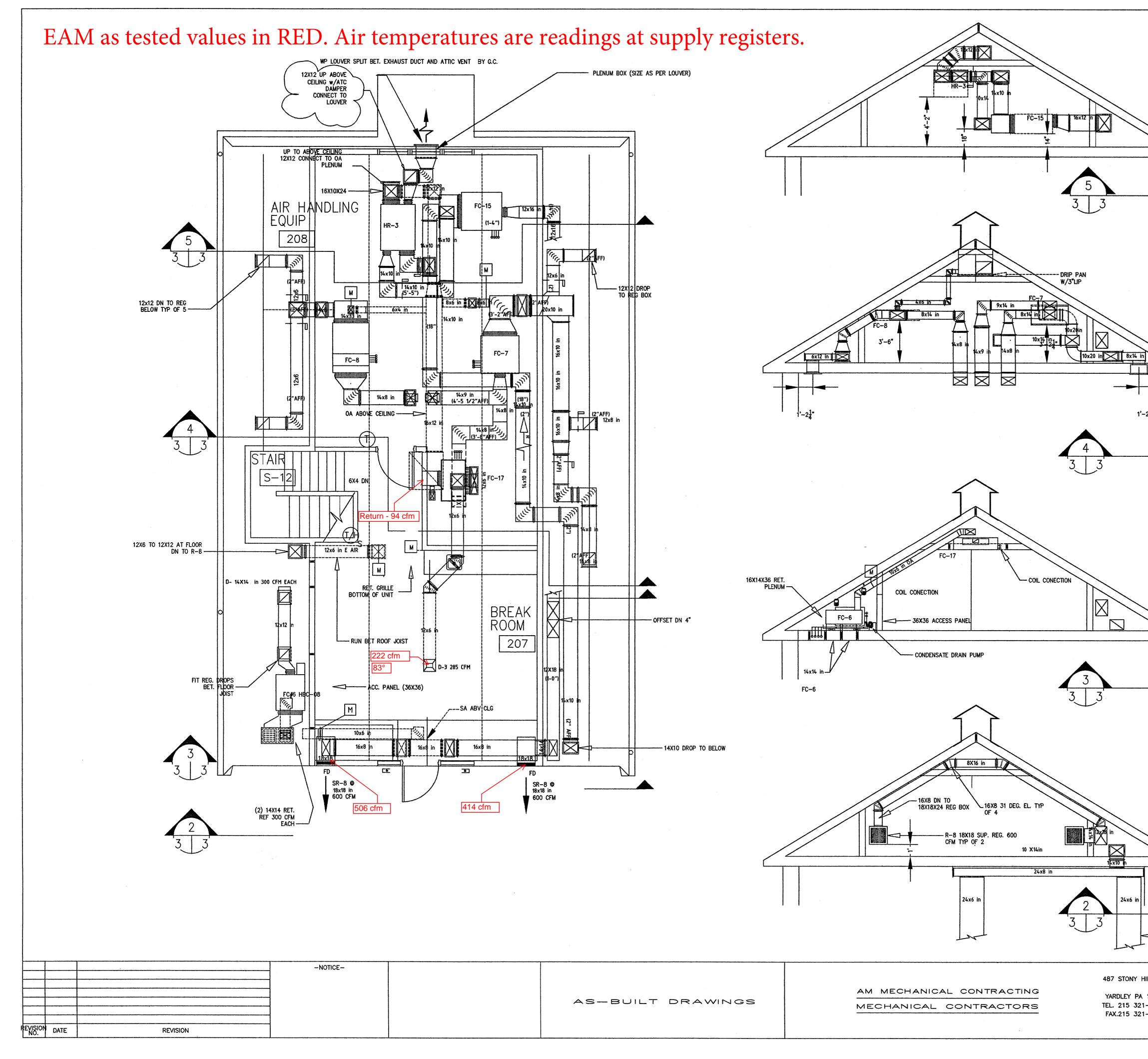




REVISION DATE

REVISION

•.


•

, ;

MECHANICAL CONTRACTORS

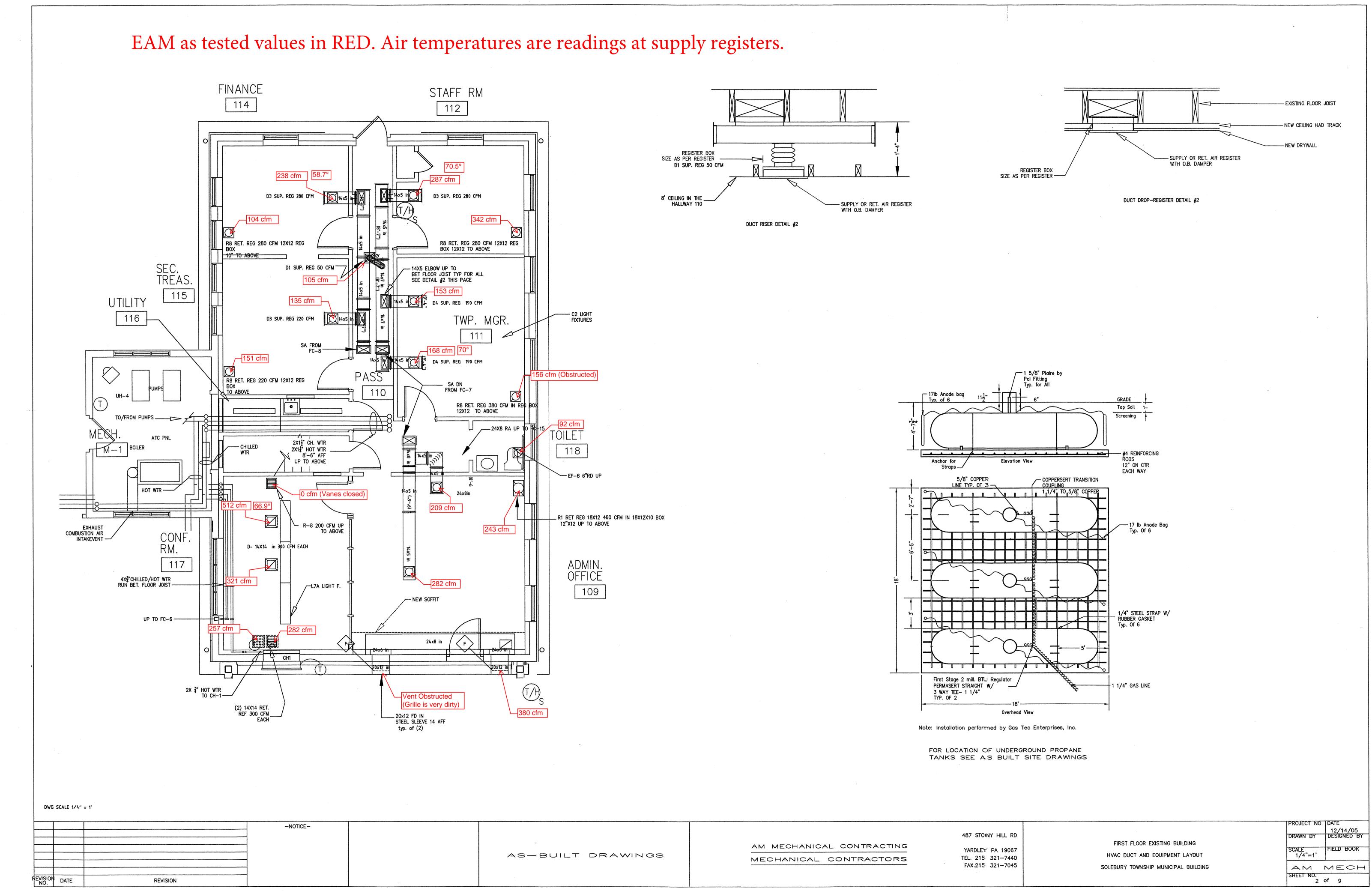
487 STONY YARDLEY TEL. 215 FAX.215

| NEE σ 2.4 s        | HILL RD<br>A 19067<br>21-7440<br>21-7045 | 2ND FLOOR NEW BUILD<br>HVAC DUCT AND EQUIP<br>SOLEBURY TOWNSHIP MUN | PMENT LAYOUT | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|--------------------|------------------------------------------|---------------------------------------------------------------------|--------------|-------------------------------------------------------|
| NΕ φ. μ. θ         |                                          |                                                                     |              | PROJECT NO DATE                                       |
| ΤΕΙ Ο' ΙΙ-S<br>Π   |                                          |                                                                     |              |                                                       |
| ΤΕΩ. QF. ₩=Α       |                                          |                                                                     |              |                                                       |
| ΤΕΡ. OF. JK-8      |                                          |                                                                     |              |                                                       |
| NEE OF W-8         |                                          |                                                                     |              |                                                       |
| ΥΕΡ. OF. Μ-8<br>ΤΤ |                                          |                                                                     |              |                                                       |
| NER OF.W-8         |                                          |                                                                     |              |                                                       |
| ΤΕΕ. QF_W=8<br>Τ   |                                          |                                                                     |              |                                                       |
| NER. 0F. JK-8      | 1                                        |                                                                     |              |                                                       |
| νIER. 0F_₩-8       | fm                                       |                                                                     |              |                                                       |
|                    |                                          |                                                                     |              |                                                       |
|                    |                                          |                                                                     |              |                                                       |
|                    |                                          |                                                                     |              |                                                       |
|                    |                                          |                                                                     |              |                                                       |
|                    |                                          |                                                                     |              |                                                       |
|                    |                                          |                                                                     |              |                                                       |



17

a.


4.,

.

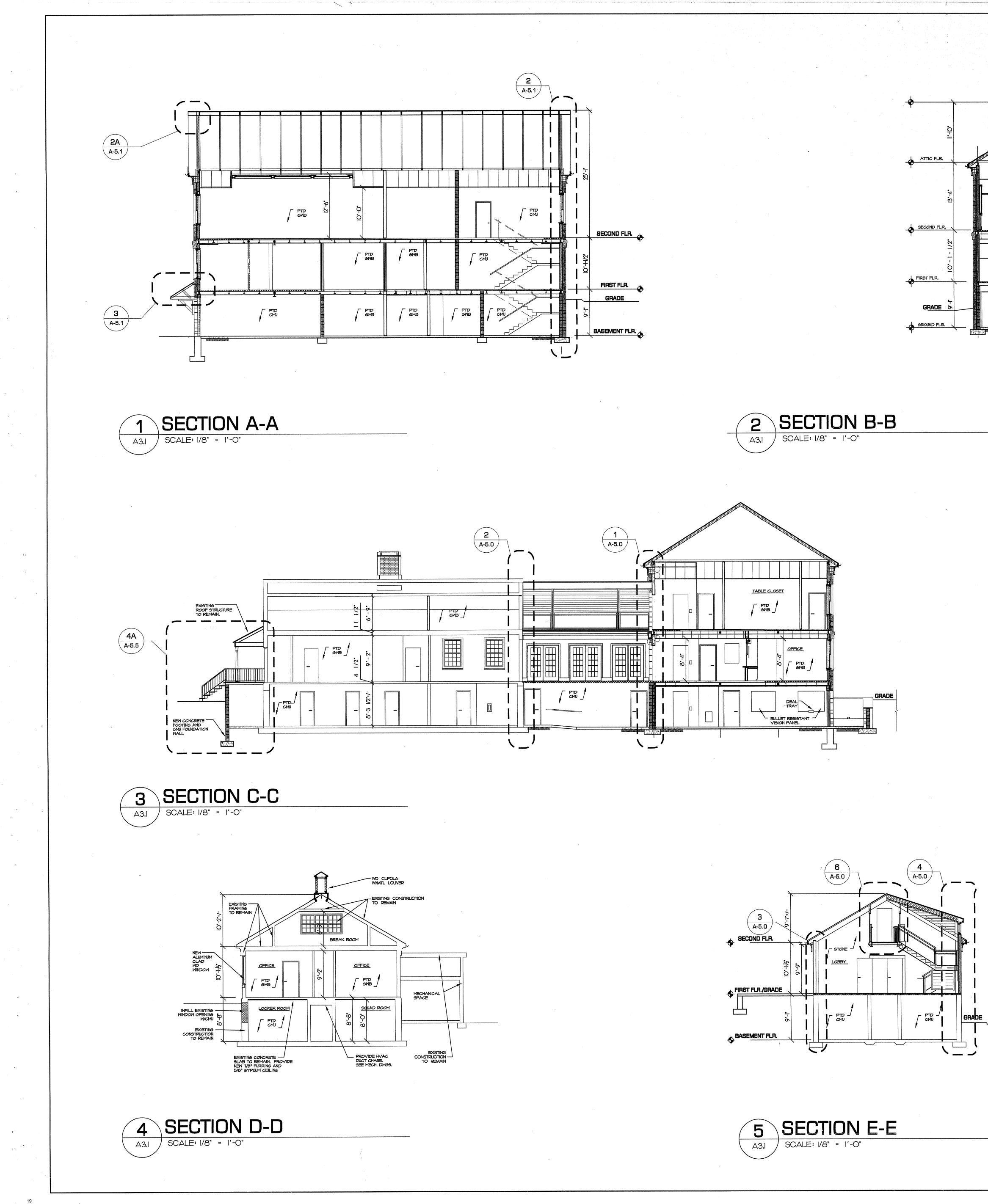
. \*

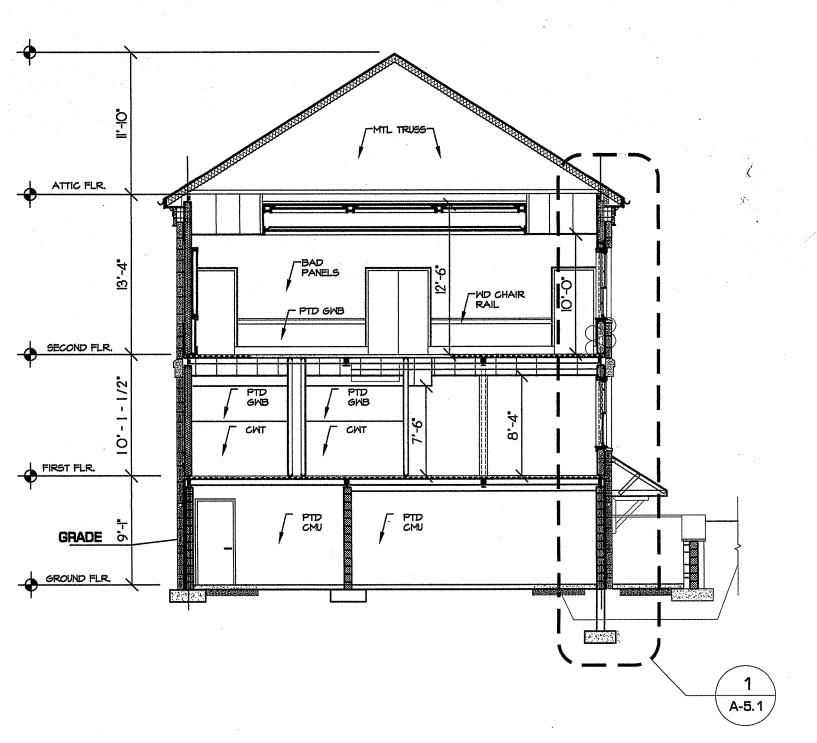
. '

| 2ND FLOOR EXISTING BUILDING     SCALE     FIELD BOOK       HVAC DUCT AND EQUIPMENT LAYOUT     1/4"=1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40<br>45          |                       |            |         | NECH |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|------------|---------|------|
| 246 DROP TO<br>F-7.1.4 DATES<br>F-7.1.4 |                   | HVAC DUCT AND FOUIPME | INT LAYOUT | 1/4"=1' | 1    |
| 24X6 DROP TO<br>R-7 14 <sup>2</sup> AFF<br>FNAL LOCATION OF<br>R-7 BY ARCHIECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57                |                       |            | SCALE   |      |
| 24%6 DROP TO<br>R-7 14" AF<br>FRAL LOCATION OF<br>FRAL LOCATION OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD                |                       |            |         |      |
| 246 DRD 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FINAL LOCATION OF |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24X6 DROP TO      |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         | •    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                 |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                 |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{X}$      |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                       |            |         |      |



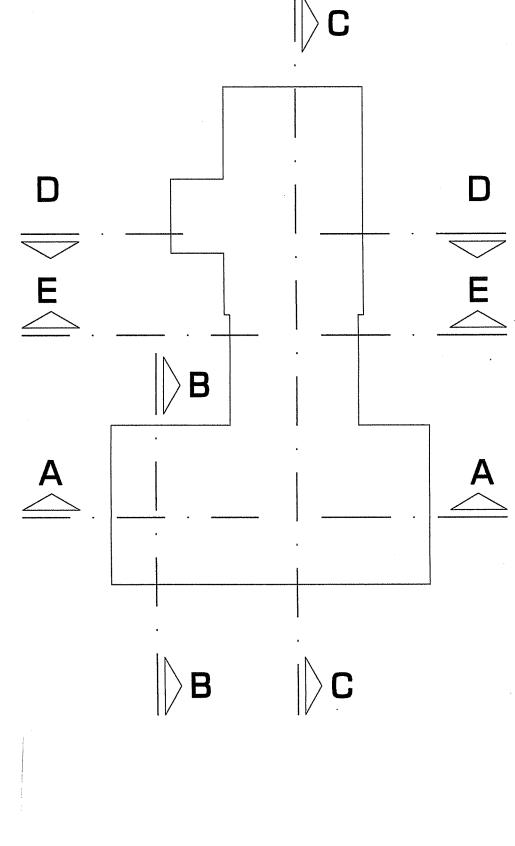
.

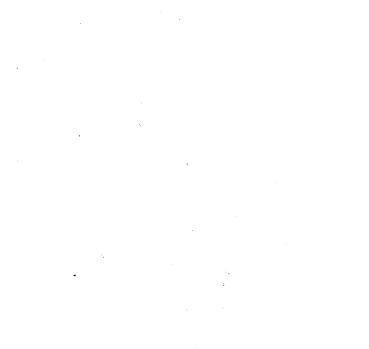

18

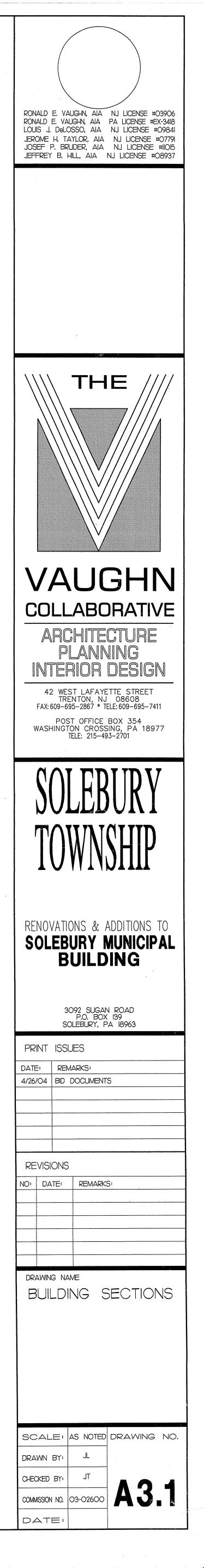

-----

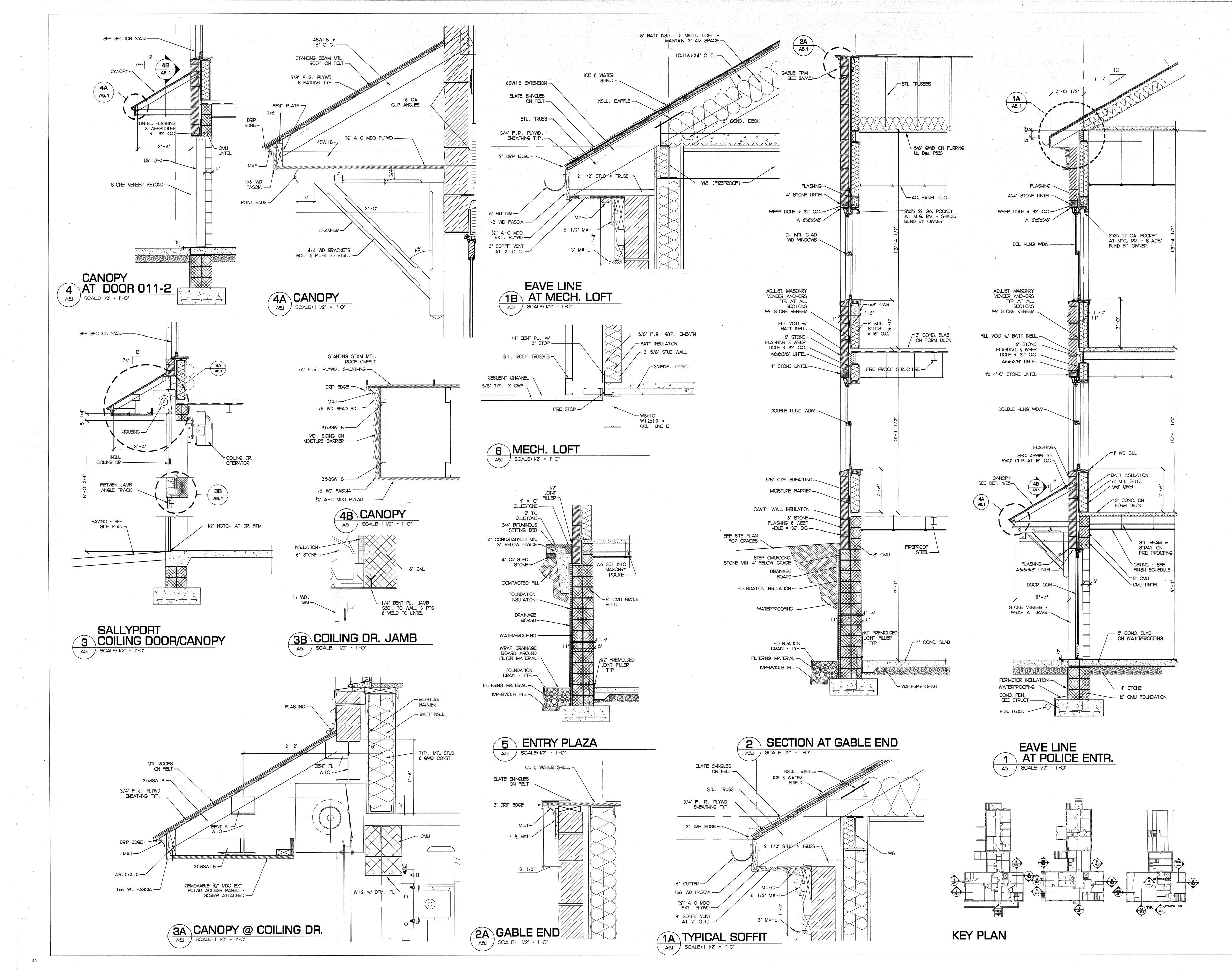
4

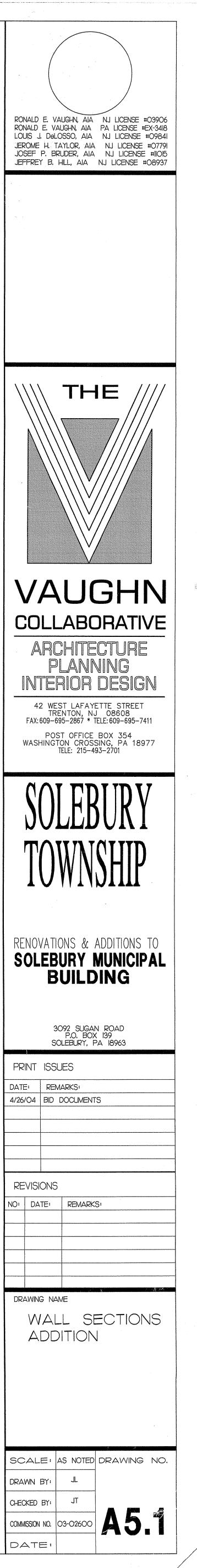
-----


| AS-BUILT DRAWINGS | AM MECHANICAL CONTRACTING | 487 ST<br>YARDLE  |
|-------------------|---------------------------|-------------------|
|                   | MECHANICAL CONTRACTORS    | TEL. 21<br>FAX.21 |





and a second second



















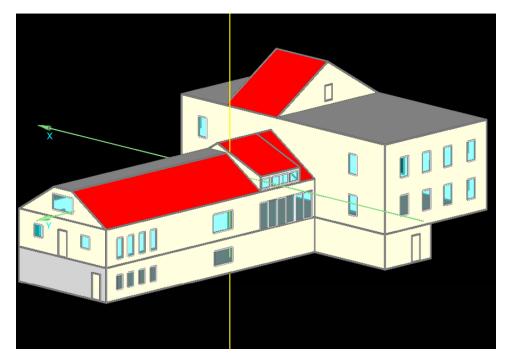


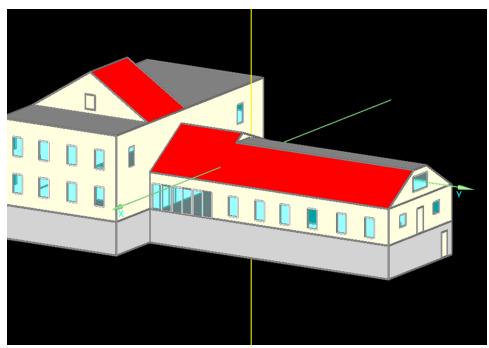


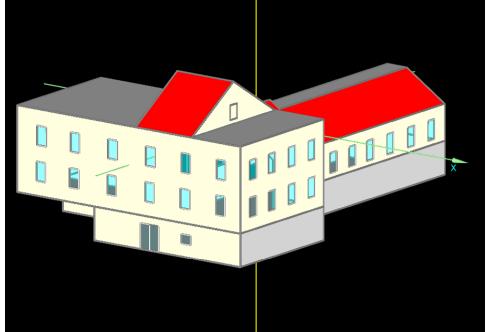


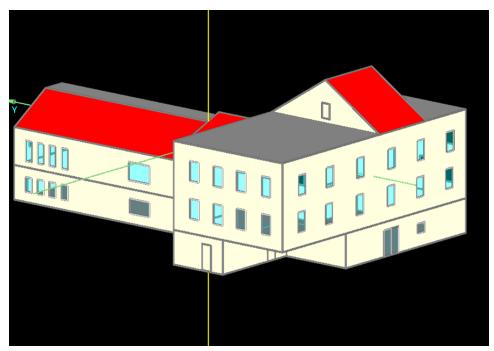

# WUFI Energy Model Existing vs. Proposed Design

## **Before/After Energy Performance**





www.eamenergy.com


# **WUFI Energy Model Table of Contents**


| • | Building Rendering                  | .29 |
|---|-------------------------------------|-----|
| • | Existing Building Analysis          | .30 |
| • | Existing Specifications Report      | .40 |
| • | Existing Site Energy Report         | .53 |
| • | Existing Site Energy Monthly Report | 56  |
| • | Proposed Building Analysis          | 58  |
| • | Proposed Specifications Report      | .68 |
| • | Proposed Site Energy Report         | .82 |
| • | Proposed Site Energy Monthly Report | .85 |

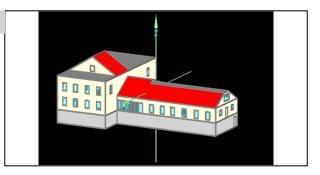











#### **BUILDING ANALYSIS**

#### **BUILDING INFORMATION**

| Category:             | Non-residential  |  |
|-----------------------|------------------|--|
| Status:               | Completed        |  |
| Building type:        | Retrofit         |  |
| Year of construction: | Reno in 2004     |  |
| Units:                | 1                |  |
| Number of occupants:  | 25 (Design)      |  |
| Occupant density:     | 559.5 ft²/Person |  |
|                       |                  |  |

#### **Boundary conditions**

| Climate:              | WILLOW GROVE NAS PA |            |
|-----------------------|---------------------|------------|
| Internal heat gains:  | 4                   | Btu/hr ft² |
| Interior temperature: | 70                  | °F         |
| Overheat temperatur   | e: <b>77</b>        | °F         |

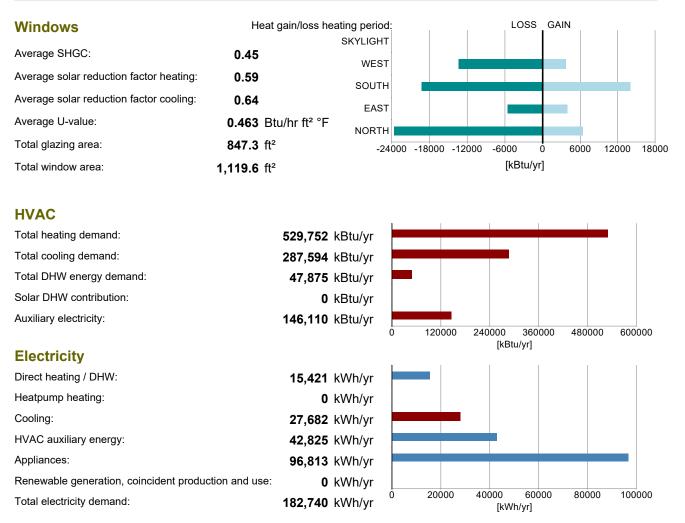


#### **Building geometry**

| Enclosed volume:     | 145,421.4 | ft³  |
|----------------------|-----------|------|
| Net-volume:          | 110,520.3 | ft³  |
| Total area envelope: | 21,277.6  | ft²  |
| Area/Volume Ratio:   | 0.1       | 1/ft |
| Floor area:          | 13,988    | ft²  |
| Envelope area/iCFA:  | 1.521     |      |

#### Certificate criteria:

#### Heating/Cooling Demand Targets from CBECS Building Peer Group Data. See Page 91.


#### Heating demand specific: 37.86 kBtu/ft²yr 5 7 6 target: 27.1 kBtu/ft<sup>2</sup>yr total: 529,545.17 kBtu/yr **Cooling demand** sensible: 18.11 kBtu/ft²yr latent: 2.45 kBtu/ft<sup>2</sup>yr specific: 20.56 kBtu/ft²yr 5 3 target: 6.9 kBtu/ft²yr total: 287,594.2 kBtu/yr **Heating load** specific: 24.08 Btu/hr ft<sup>2</sup> 2 3 target: 22 Btu/hr ft2 total: 336,807.88 Btu/hr **Cooling load** specific: 7.75 Btu/hr ft<sup>2</sup> target: 3 Btu/hr ft<sup>2</sup>

108,431.61 Btu/hr

total:

30

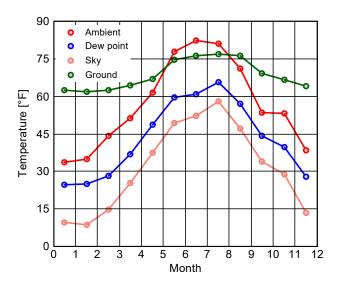
### **BUILDING ELEMENTS**

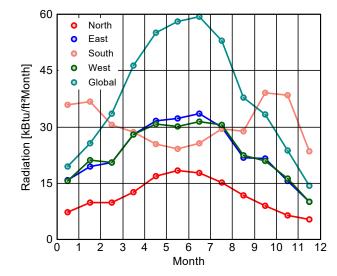


### **HEAT FLOW - HEATING PERIOD**

#### **Heat gains**

31


| Solar:                     | <b>67,217</b> kBtu/yr  | ,Solar 9 %                                    |
|----------------------------|------------------------|-----------------------------------------------|
| Inner sources:             | <b>272,884</b> kBtu/yr |                                               |
| Credit of thermal bridges: | <b>0</b> kBtu/yr       | Mechanical heating 56 % -                     |
| Mechanical heating:        | <b>529,545</b> kBtu/yr | Credit of thermal bridges 0 %                 |
| Heat losses                |                        |                                               |
| Opaque building envelope:  | <b>374,494</b> kBtu/yr | Mechanical ventilation 30 %                   |
| Windows & Doors:           | 78,115 kBtu/yr         | -Opaque building envelope 43 %                |
| Natural ventilation:       | <b>154,588</b> kBtu/yr |                                               |
| Mechanical ventilation:    | <b>262,450</b> kBtu/yr | Natural ventilation 18 % \Vindows & Doors 9 % |


## CLIMATE

| Latitude:                       | 40.2  | 0        |
|---------------------------------|-------|----------|
| Longitude:                      | -75.2 | 0        |
| Elevation of weather station:   | 334.6 | ft       |
| Elevation of building site:     | 334.6 | ft       |
| Heat capacity air:              | 0.018 | Btu/ft³F |
| Daily temperature swing summer: | 20    | °F       |
| Average wind speed:             | 13.1  | ft/s     |

### Ground

| Average ground surface temperature:   | 58.7 | °F           |
|---------------------------------------|------|--------------|
| Amplitude ground surface temperature: | 56.3 | °F           |
| Ground thermal conductivity:          | 1.2  | Btu/hr ft °F |
| Ground heat capacity:                 | 29.8 | Btu/ft³F     |
| Depth below grade of groundwater:     | 9.8  | ft           |
| Flow rate groundwater:                | 0.2  | ft/d         |

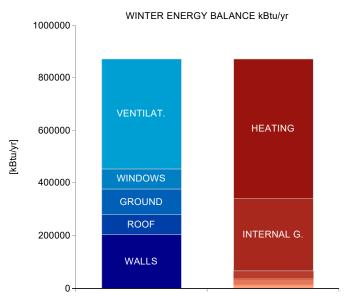




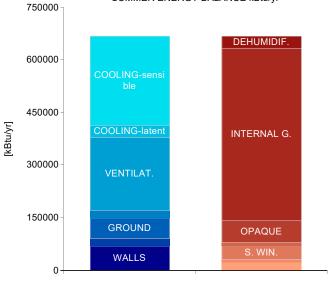
## **Calculation parameters**

| Length of heating period                            | <b>243</b> days/yr |
|-----------------------------------------------------|--------------------|
| Heating degree hours                                | <b>111.1</b> kFh/a |
| Phase shift months                                  | <b>0.7</b> mths    |
| Time constant heating demand                        | <b>17</b> hr       |
| Time constant cooling demand                        | <b>0</b> hr        |
| Time constant cooling demand with night ventilation | <b>0</b> hr        |

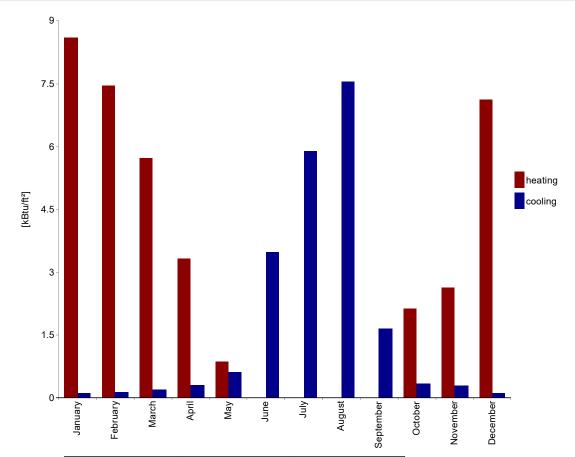
| Climate for                         | Heating load 1 | Heating load 2 | Cooling |
|-------------------------------------|----------------|----------------|---------|
| Temperature [°F]                    | 23.4           | 31.3           | 81.5    |
| Solar radiation North [Btu/hr ft²]  | 9.5            | 7.9            | 24.4    |
| Solar radiation East [Btu/hr ft²]   | 22.5           | 16.8           | 42.2    |
| Solar radiation South [Btu/hr ft²]  | 51.4           | 33             | 39.3    |
| Solar radiation West [Btu/hr ft²]   | 20.9           | 14.6           | 46      |
| Solar radiation Global [Btu/hr ft²] | 24.7           | 18.1           | 84.3    |


Relevant boundary conditions for heating load calculation: Heating load 1

### ANNUAL HEAT DEMAND


| Transmission losses :<br>Ventilation losses: | 452,609<br>417 037 | ,         |
|----------------------------------------------|--------------------|-----------|
| Total heat losses:                           | 417,037<br>869,646 | ,         |
| Solar heat gains:                            | 80,619             | kBtu/yr   |
| Internal heat gains:                         | 327,293            | kBtu/yr   |
| Total heat gains:                            | 407,912            | kBtu/yr   |
| Utilization factor:                          | 83.4               | %         |
| Useful heat gains:                           | 340,100            | kBtu/yr   |
| Annual heat demand:                          | 529,545            | kBtu/yr   |
| Specific annual heat demand:                 | 37,860.8           | Btu/ft²yr |
|                                              |                    |           |

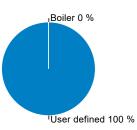
### ANNUAL COOLING DEMAND

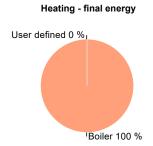

| Solar heat gains:               | 140,017   | kBtu/yr    |
|---------------------------------|-----------|------------|
| Internal heat gains:            | 491,613   | kBtu/yr    |
| Total heat gains:               | 631,630   | kBtu/yr    |
| Transmission losses :           | 745,414   | kBtu/yr    |
| Ventilation losses:             | 910,392   | kBtu/yr    |
| Total heat losses:              | 1,655,806 | kBtu/yr    |
| Utilization factor:             | 22.8      | %          |
| Useful heat losses:             | 378,275   | kBtu/yr    |
| Cooling demand - sensible:      | 253,355   | kBtu/yr    |
| Cooling demand - latent:        | 34,239    | kBtu/yr    |
| Annual cooling demand:          | 287,594   | kBtu/yr    |
| Specific annual cooling demand: | 20.6      | kBtu/ft²yr |



SUMMER ENERGY BALANCE kBtu/yr






| Month     | Heating<br>[kBtu/ft²] | Cooling<br>[kBtu/ft²] |
|-----------|-----------------------|-----------------------|
| January   | 8.6                   | 0.1                   |
| February  | 7.4                   | 0.1                   |
| March     | 5.7                   | 0.2                   |
| April     | 3.3                   | 0.3                   |
| Мау       | 0.9                   | 0.6                   |
| June      | 0                     | 3.5                   |
| July      | 0                     | 5.9                   |
| August    | 0                     | 7.6                   |
| September | 0                     | 1.7                   |
| October   | 2.1                   | 0.4                   |
| November  | 2.6                   | 0.3                   |
| December  | 7.1                   | 0.1                   |

|                                    | DHW                             |                                       |                                        | Heating                             |                                       |                                        | Total                |                                           |                                         |
|------------------------------------|---------------------------------|---------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|----------------------|-------------------------------------------|-----------------------------------------|
| System                             | Covered<br>DHW<br>demand<br>[%] | Estimated<br>solar<br>fraction<br>[%] | Final<br>energy<br>demand<br>[kBtu/yr] | Covered<br>heating<br>demand<br>[%] | Estimated<br>solar<br>fraction<br>[%] | Final<br>energy<br>demand<br>[kBtu/yr] | Performance<br>ratio | CO2<br>equivalent<br>emissions<br>[lb/yr] | Source<br>energy<br>demand<br>[kBtu/yr] |
| Boiler, Lochinvar Knight XL Boiler | 0                               | 0                                     | 0                                      | 100                                 | 0                                     | 561,503                                | 0                    | 90,707.3                                  | 617,653.3                               |
| User defined, Trane Chiller        | 100                             | 0                                     | 52,614.4                               | 0                                   | 0                                     | 0                                      | 1.1                  | 78.9                                      | 94,706                                  |
| Σ                                  | 100                             | 0                                     | 52,614.4                               | 100                                 | 0                                     | 561,503                                |                      | 90,786.2                                  | 712,359.3                               |







#### **COOLING UNITS**

|                              | sensible            | latent              |
|------------------------------|---------------------|---------------------|
| Air cooling:                 | <b>0</b> kBtu/ft²yr | <b>0</b> kBtu/ft²yr |
| Recirculation cooling:       | 18.1 kBtu/ft²yr     | 3.2 kBtu/ft²yr      |
| Additional dehumidification: |                     | 1.1 kBtu/ft²yr      |
| Panel cooling:               | <b>0</b> kBtu/ft²yr |                     |
| Sum:                         | 18.1 kBtu/ft²yr     | 4.3 kBtu/ft²yr      |

#### **Boiler**

| Boiler type:                 | Gas            |  |
|------------------------------|----------------|--|
| Condensing:                  | yes            |  |
| In thermal envelope:         | no             |  |
| Boiler output:               | 658,000 Btu/hr |  |
| Efficiency at 30% load:      | <b>98</b> %    |  |
| Efficiency at normal output: | <b>94</b> %    |  |
| Heatloss at 70°C standby:    | <b>0.5</b> %   |  |
|                              |                |  |

## VENTILATION

### Energy transportable by supply air

| Heating energy                           |                        |                |    |   |   |   |   |   |
|------------------------------------------|------------------------|----------------|----|---|---|---|---|---|
| transportable:                           | 6.59 W/ft <sup>2</sup> |                |    |   |   |   |   |   |
| load:                                    | 7.06 W/ft <sup>2</sup> | 0              | 1  | 2 | 3 | 4 | 5 | 6 |
| Cooling energy                           |                        |                |    |   |   |   |   |   |
| transportable:                           | 3.81 W/ft <sup>2</sup> |                |    |   |   |   |   |   |
| load:                                    | 2.27 W/ft <sup>2</sup> | 0              | 1  | 2 | 3 | 4 | 5 | 6 |
| Infiltration pressure test ACH50:        |                        | <b>7.84</b> 1/ | hr |   |   |   |   |   |
| Total extract air demand:                |                        | 2,760 cf       |    |   |   |   |   |   |
| Supply air per person:                   |                        | <b>18</b> cfi  |    |   |   |   |   |   |
| Occupancy:                               |                        | 25             |    |   |   |   |   |   |
| Average air flow rate:                   |                        | 2 000 of       |    |   |   |   |   |   |
| C C                                      |                        | 3,880 cfi      |    |   |   |   |   |   |
| Average air change rate:                 |                        | <b>2.11</b> 1/ |    |   |   |   |   |   |
| Effective ACH ambient:                   |                        | <b>1.48</b> 1/ | hr |   |   |   |   |   |
| Effective ACH ground:                    |                        | 0 1/           | hr |   |   |   |   |   |
| Energetically effective air exchange:    |                        | <b>1.48</b> 1/ | hr |   |   |   |   |   |
| Infiltration air change rate:            |                        | <b>0.55</b> 1/ | hr |   |   |   |   |   |
| Infiltration air change rate (heating lo | ad):                   | <b>1.37</b> 1/ | hr |   |   |   |   |   |
| <b>T C D C</b>                           |                        |                |    |   |   |   |   |   |
| Type of ventilation system:              | Balanced vent          | lation         |    |   |   |   |   |   |

| Type of ventilation system:     | Balanced ventilation |
|---------------------------------|----------------------|
| Wind screening coefficient (e): | 0.07                 |
| Wind exposure factor:           | 15                   |
| Wind shield factor:             | 0.05                 |

#### Ventilation heat losses:

#### 345,607.75 kBtu/yr

Devices

| Name                       | Sensible reco<br>efficiency<br>[-] |                     |      | ctric efficiency<br>[W/cfm] | Heat recovery<br>efficiency SHX<br>[-] | Effective recovery<br>efficiency<br>[-] |  |
|----------------------------|------------------------------------|---------------------|------|-----------------------------|----------------------------------------|-----------------------------------------|--|
| Greenheck ERVs             | 0.8                                | 0.8                 |      | 0.03                        | 0                                      | 0.8                                     |  |
| Altogether                 | 0.6                                |                     | 0.02 |                             | 0                                      | 0.6                                     |  |
| Ducts                      |                                    |                     |      |                             |                                        |                                         |  |
| Name                       | Length<br>(total)<br>[ft]          | Cle<br>cross-<br>[f |      | U-value<br>[Btu/hr ft² °F]  | Assigned<br>ventilation units          |                                         |  |
| Supply / outdoor air duct  | 15                                 | 1.3                 | 389  | 4.62                        | Greenheck ERVs                         |                                         |  |
| Extract / Exhaust air duct | 15                                 | 1.3                 | 389  | 4.62                        | Greenheck ERVs                         |                                         |  |
| Σ                          | 30                                 |                     |      |                             |                                        |                                         |  |
| *                          | length * quantity                  |                     | *1   | * thermal conductivi        | ty / thickness                         |                                         |  |

ngth \* quantity

tivity /

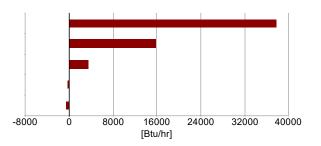
## **ELECTRICITY DEMAND - AUXILIARY ELECTRICITY**

| Туре                            | Quantity | Indoor | Norm<br>demand | Electric<br>demand<br>[kWh/yr] | Source<br>energy<br>[kBtu/yr] | ] | E    | ectric dema      | nd   |       |
|---------------------------------|----------|--------|----------------|--------------------------------|-------------------------------|---|------|------------------|------|-------|
| Boiler heating auxiliary energy | 1        | no     | 187.5 W        | 503.2                          | 3090.2                        |   |      |                  |      |       |
| Other                           | 1        | no     | 0 W            | 0                              | 0                             |   |      |                  |      |       |
| DHW circulating pump            | 1        | yes    | 754 W          | 5301.7                         | 32558.8                       |   |      |                  |      |       |
| Heating system circulation pump | 1        | yes    | 2,262 W        | 6672.2                         | 40975.4                       |   |      |                  |      |       |
| Heating system circulation pump | 18       | yes    | 30 W           | 1592.8                         | 9781.9                        |   |      |                  |      |       |
| Other                           | 1        | yes    | 3,770 W        | 10857.6                        | 66679.2                       |   |      |                  |      |       |
| Ventilation winter              | 1        | yes    | 0.4 W/cfm      | 6313.4                         | 38772.3                       |   |      |                  |      |       |
| Ventilation Defrost             | 1        | yes    | 20,107.1 W     | 4358                           | 26763.5                       |   |      | I I              |      |       |
| Ventilation summer              | 1        | yes    | 0.4 W/cfm      | 7226                           | 44376.9                       |   |      |                  |      |       |
| Σ                               |          |        |                | 42824.9                        | 262998.2                      | Ó | 3000 | 6000<br>[kWh/yr] | 9000 | 12000 |

### ELECTRICITY DEMAND NON-RESIDENTIAL BUILDING

#### Equipment

| Туре         | Quantity | Indoor | Utilization pattern               | Power rating<br>norm demand | Electric<br>demand<br>[kWh/yr] | Source<br>energy<br>[kBtu/yr] | ]     | Electric | demai        | nd  |    |       |
|--------------|----------|--------|-----------------------------------|-----------------------------|--------------------------------|-------------------------------|-------|----------|--------------|-----|----|-------|
| PC           | 25       | yes    | Pattern 1: Government<br>Building | 82 (+82) W                  | 7,482.5 (+0)                   | 45951.9                       |       |          |              |     |    |       |
| Monitor      | 25       | yes    | Pattern 1: Government<br>Building | 21 (+21) W                  | 1,916.3 (+0)                   | 11768.2                       |       |          |              |     |    |       |
| Printer      | 6        | yes    | Pattern 1: Government<br>Building | 425 (+425) W                | 930.8<br>(+8,376.8)            | 57159.7                       |       |          |              |     |    |       |
| Server       | 1        | yes    | Pattern 1: Government<br>Building | 2,200 (+2,200) W            | 8,030<br>(+11,242)             | 118354.1                      |       |          |              |     |    |       |
| User defined | 1        | yes    |                                   | 13,988 (+0) W               | 29,095 (+0)                    | 178679.9                      |       |          |              |     |    |       |
| Refrigerator | 2        | yes    |                                   | 1.6 kWh/d                   | 1197.2                         | 7352.3                        |       |          |              |     |    |       |
| Σ            | 60       |        |                                   |                             | 48,651.7<br>(+19,618.8)        | 419266.1                      | 0 800 |          | 000<br>h/yr] | 240 | 00 | 32000 |
| V            |          |        |                                   |                             | •                              |                               |       | [        |              |     |    |       |


#### Lighting

| Name       | Utilization pattern               | Installed<br>lighting<br>power<br>[W/ft²] | Daylight<br>utilization | Lighting<br>full load<br>hours<br>[hrs/yr] | Electric<br>demand<br>[kWh/yr] | Source<br>energy<br>[kBtu/yr] | Electric demand                    |
|------------|-----------------------------------|-------------------------------------------|-------------------------|--------------------------------------------|--------------------------------|-------------------------------|------------------------------------|
| Lighting 1 | Pattern 1: Government<br>Building | 1.2                                       | Low                     | 3120                                       | 4713.4                         | 28946.1                       |                                    |
| Lighting 2 | Pattern 1: Government<br>Building | 1.2                                       | Low                     | 1560                                       | 8117.5                         | 49851.7                       |                                    |
| Lighting 3 | Pattern 1: Government<br>Building | 1.2                                       | Low                     | 1560                                       | 9950.5                         | 61108.5                       |                                    |
| Lighting 4 | Pattern 1: Government<br>Building | 1.2                                       | Low                     | 1560                                       | 5760.8                         | 35378.6                       |                                    |
| Σ          |                                   |                                           |                         |                                            | 28542.2                        | 175285                        | 0 3000 6000 9000 12000<br>[kWh/yr] |

## INTERNAL HEAT GAINS

### Heating season

| Electricity total:            | 37,709.9 Btu/hr          |
|-------------------------------|--------------------------|
| Auxiliary electricity:        | 15,736.5 Btu/hr          |
| People:                       | 3,554.3 Btu/hr           |
| Cold water:                   | -341.8 Btu/hr            |
| Evaporation:                  | -533.1 Btu/hr            |
| Σ:                            | 56,125.7 Btu/hr          |
| Specific internal heat gains: | 4 Btu/hr ft <sup>2</sup> |



### **Cooling season**

| Electricity total:            | 37,709.9 Btu/hr          |       |   |      |                   |       |       |       |
|-------------------------------|--------------------------|-------|---|------|-------------------|-------|-------|-------|
| Auxiliary electricity:        | 10,465.9 Btu/hr          |       |   |      |                   |       |       |       |
| People:                       | 3,554.3 Btu/hr           |       |   |      |                   |       |       |       |
| Cold and hot water:           | -341.8 Btu/hr            |       | 4 |      |                   |       |       |       |
| Evaporation:                  | -533.1 Btu/hr            |       |   |      |                   |       |       |       |
| Σ:                            | 56,125.7 Btu/hr          | -8000 | 0 | 8000 | 16000<br>[Btu/hr] | 24000 | 32000 | 40000 |
| Specific internal heat gains: | 4 Btu/hr ft <sup>2</sup> |       |   |      |                   |       |       |       |

## DHW AND DISTRIBUTION

| DHW consumption per person per day:<br>Average cold water temperature supply: | 3.2<br>58.7 | gal/Person/day<br>∘⊧ |
|-------------------------------------------------------------------------------|-------------|----------------------|
|                                                                               | 50.7        | I                    |
| Useful heat DHW:                                                              | 6,921.1     | kBtu/yr              |
| Specific useful heat DHW:                                                     | 494.8       | Btu/ft²yr            |
|                                                                               |             |                      |
| Total heat losses of the DHW system:                                          | 40,953.7    | kBtu/yr              |
| Specific losses of the DHW system:                                            | 2,928.1     | Btu/ft²yr            |
| Performance ratio DHW distribution system and storage:                        | 6.9         |                      |
| Utilization ratio DHW distribution system and storage:                        | 0.1         |                      |
| Total heat demand of DHW system:                                              | 47,874.8    | kBtu/yr              |
| Total specific heat demand of DHW system:                                     | 3,422.9     | Btu/ft²yr            |
| Total heat losses of the hydronic heating distribution:                       | 207         | kBtu/yr              |
| Specific losses of the hydronic heating distribution:                         |             | Btu/ft²yr            |
| Performance ratio of heat distribution:                                       | 100         | •                    |

| Region                              | Length<br>[ft] | Annual heat loss<br>[kBtu/yr] |  |  |  |  |  |
|-------------------------------------|----------------|-------------------------------|--|--|--|--|--|
| Hydronic heating distribution pipes |                |                               |  |  |  |  |  |
| In conditioned space                | 715            | 207                           |  |  |  |  |  |
| Σ                                   | 715            | 207                           |  |  |  |  |  |
| DHW circulation pipes               |                |                               |  |  |  |  |  |
| In conditioned space                | 430            | 36352.3                       |  |  |  |  |  |
| Σ                                   | 430            | 36352.3                       |  |  |  |  |  |
| Individual pipes                    |                |                               |  |  |  |  |  |
| In conditioned space                |                | 0                             |  |  |  |  |  |
| Σ                                   |                | 0                             |  |  |  |  |  |
| Water storage                       | Water storage  |                               |  |  |  |  |  |
| Σ                                   |                | 0                             |  |  |  |  |  |

## **Property/Site**

| Building name        | Solebury Township Municipal Building |
|----------------------|--------------------------------------|
| Property information |                                      |
| Owner's name         | Solebury Township                    |
| Property address     | 3092 Sugan Road                      |
| City                 | Solebury                             |
| Zip                  | 18963                                |
| Site information     |                                      |
| Climate Location     | WILLOW GROVE NAS PA                  |

## Building

## **Building Information**

| Area of Conditioned Space               | <b>13,988</b> ft <sup>2</sup>    |                      |
|-----------------------------------------|----------------------------------|----------------------|
| Volume of conditioned space             | <b>110,520.3</b> ft <sup>3</sup> |                      |
| Number of bedrooms                      | 4                                |                      |
| Foundation Ty <b>Heated basement, o</b> | r underground floor              | slab / Slab on grade |
| Winter setpoint temperature             | <b>70</b> °F                     |                      |
| Summer setpoint temperature             | <b>77</b> °F                     |                      |

#### Below grade walls

|   | Name                       | Area<br>[ft²] | Assembly             |
|---|----------------------------|---------------|----------------------|
| E | Below Grade Basement Walls | 1,455.9       | Uninsulated CMU Wall |

#### Assembly (Id.2): Uninsulated CMU Wall

| Hor | nogenous layers                                          |               |                 | //                  | 1                 |       |
|-----|----------------------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|
| The | ermal resistance: 1.859 hr ft² °F/Btu (without Rsi, Rse) |               |                 |                     |                   |       |
| Неа | at transfer coefficient (U-value): 0.354 Btu/hr ft² °F   |               |                 |                     |                   |       |
| Thi | ckness: 9.449 in                                         |               |                 |                     |                   |       |
| Nr. | Material/Layer<br>(from outside to inside)               | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |
| 1   | Concrete Brick                                           | 144.52        | 0.19            | 0.4235              | 9.449             |       |

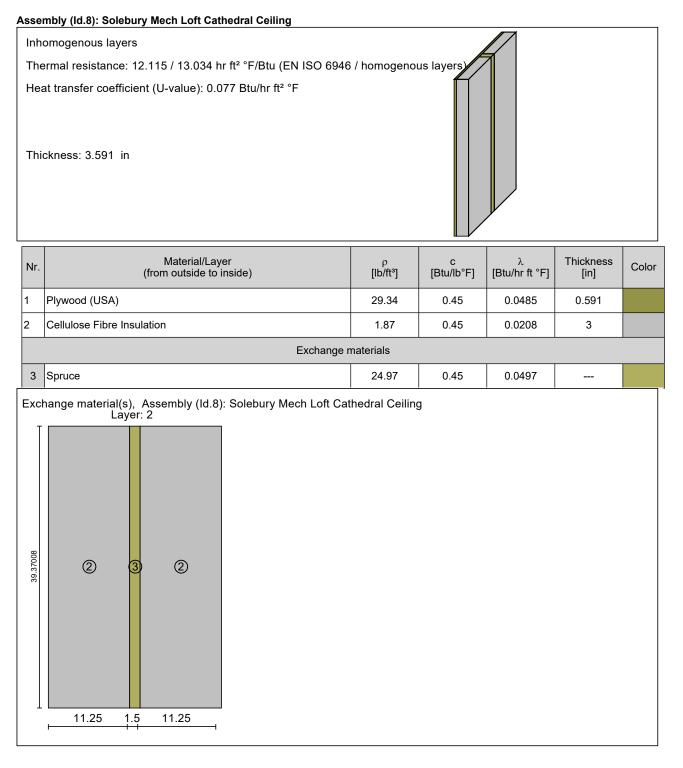
#### Slab floor

| Name | Area<br>[ft²] | Assembly                |
|------|---------------|-------------------------|
| Slab | 4,540.7       | 4" concrete Uninsulated |

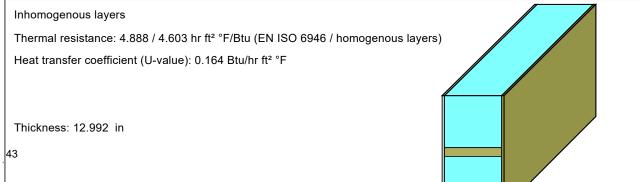
#### Assembly (Id.4): 4" concrete Uninsulated

| Hor<br>The<br>Hea | nogenous layers<br>ermal resistance: 0.42 hr ft² °F/Btu (without Rsi, Rse)<br>at transfer coefficient (U-value): 0.722 Btu/hr ft² °F<br>ckness: 4 in |               |                 |                     |                   |       |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|
| Nr.               | Material/Layer<br>(from outside to inside)                                                                                                           | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |
| 1                 | Concrete                                                                                                                                             | 131.35        | 0.19            | 0.7933              | 4                 |       |


### Heated basement, or underground floor slab


| Floor slab area                       | <b>2,271</b> ft <sup>2</sup> |
|---------------------------------------|------------------------------|
| U-Value of basement slab              | <b>0.7</b> Btu/hr ft² °F     |
| Floor slab perimeter (P)              | <b>395</b> ft                |
| Depth of basement slab below grade    | <b>6</b> ft                  |
| U-Value of basement wall              | <b>0.4</b> Btu/hr ft² °F     |
| Total R-value of perimeter insulation | 2.8 hr ft² °F/Btu            |
| Slab on grade                         |                              |
| Floor slab area                       | <b>2,271</b> ft <sup>2</sup> |
| U-Value of basement slab              | <b>0.7</b> Btu/hr ft² °F     |
| Floor slab perimeter (P)              | <b>546</b> ft                |
| Total R-value of perimeter insulation | <b>NaN</b> hr ft² °F/Btu     |

## Above-grade walls & Rim/band joists


| Name                           | Orientation                                   | Area<br>[ft²] | Short wave<br>radiation<br>absorption | Assembly                               |
|--------------------------------|-----------------------------------------------|---------------|---------------------------------------|----------------------------------------|
| Flat Attic New Building        | Horizontal (100 %)                            | 2,011.1       | 0.4                                   | Solebury Flat Attic New Building       |
| Cathedral Ceiling2             | Horizontal (100 %)                            | 236           | 0.4                                   | Solebury Mech Loft Cathedral Ceiling   |
| Floor over Sallyport           | Horizontal (100 %)                            | 510.7         | 0.4                                   | Solebury Floor over Sallyport          |
| Above Grade Wall New Building  | SE (29 %), SW (17 %),<br>NE (17 %), NW (37 %) | 4,249.3       | 0.4                                   | Solebury Above Grade Wall New Building |
| Walkout Basement Walls         | SE (13 %), NE (53 %),<br>NW (34 %)            | 1,797.8       | 0.4                                   | Uninsulated CMU Wall                   |
| Above Grade Walls Old Building | SE (28 %), SW (34 %),<br>NE (36 %), NW (2 %)  | 1,577.5       | 0.4                                   | Solebury Above Grade Wall Old Building |
| Attic Knee-Wall                | SW (50 %), NE (50 %)                          | 400.7         | 0.4                                   | Solebury Attic Knee-Wall               |
| Flat Attic Old Building        | Horizontal (100 %)                            | 362           | 0.4                                   | Solebury Mech Loft Cathedral Ceiling   |
| Cathedral Ceiling1             | SE (14 %), SW (41 %),<br>NE (32 %), NW (14 %) | 2,911.1       | 0.4                                   | Solebury Mech Loft Cathedral Ceiling   |
| Total                          |                                               | 14,056.3      |                                       |                                        |

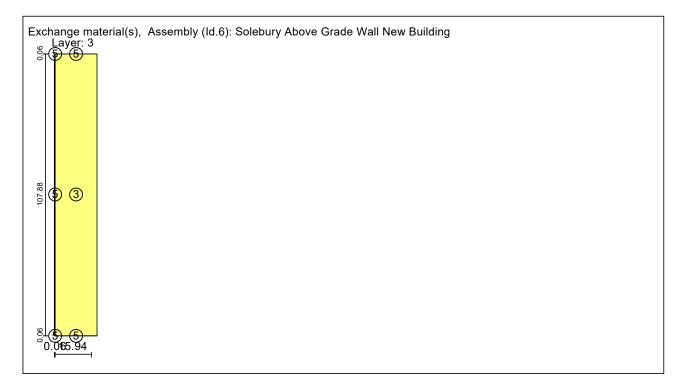
#### Assembly (Id.9): Solebury Flat Attic New Building



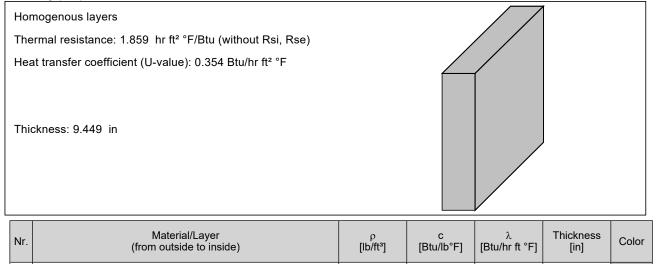


#### Assembly (Id.3): Solebury Floor over Sallyport




| Nr.  | Material/Layer<br>(from outside to inside)                             | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |
|------|------------------------------------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|
| 1    | Gypsum Board (USA)                                                     | 53.06         | 0.21            | 0.0942              | 0.492             |       |
| 2    | Air Layer 90 mm; without additional moisture capacity                  |               | 0.24            | 0.3022              | 12                |       |
| 3    | Plywood (USA)                                                          | 29.34         | 0.45            | 0.0485              | 0.5               |       |
|      | Exchange r                                                             | materials     |                 |                     |                   |       |
| 4    | Spruce                                                                 | 24.97         | 0.45            | 0.0497              |                   |       |
| Excl | nange material(s), Assembly (ld.3): Solebury Floor over Sa<br>Layer: 2 | llyport       |                 |                     |                   |       |
| 11   | 2                                                                      |               |                 |                     |                   |       |
| 5    | (4)                                                                    |               |                 |                     |                   |       |
| 5    | 2                                                                      |               |                 |                     |                   |       |
|      | 39.37008                                                               |               |                 |                     |                   |       |
|      |                                                                        |               |                 |                     |                   |       |

#### Assembly (Id.6): Solebury Above Grade Wall New Building


| Inhomogenous layers                                                             |                     |
|---------------------------------------------------------------------------------|---------------------|
| Thermal resistance: 10.763 / 18.276 hr ft² °F/Btu (EN ISO 6946                  | δ / homogenous laye |
| Heat transfer coefficient (U-value): 0.085 Btu/hr ft² °F<br>Thickness: 9.083 in |                     |
|                                                                                 |                     |

| Nr. | Material/Layer<br>(from outside to inside) | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |
|-----|--------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|
| 1   | Sandstone                                  | 138.84        | 0.18            | 0.973               | 4                 |       |
| 2   | Plywood (USA)                              | 29.34         | 0.45            | 0.0485              | 0.591             |       |
| 3   | Fibre Glass                                | 1.87          | 0.2             | 0.0202              | 4                 |       |
| 4   | Gypsum Board (USA)                         | 53.06         | 0.21            | 0.0942              | 0.492             |       |
|     | Exchange materials                         |               |                 |                     |                   |       |
| 5   | Metal Deck, unperforated                   | 486.94        | 0.11            | 26.5784             |                   |       |

WUFI®Passive V.3.3.0.2: Frank Swol/EAM Associates



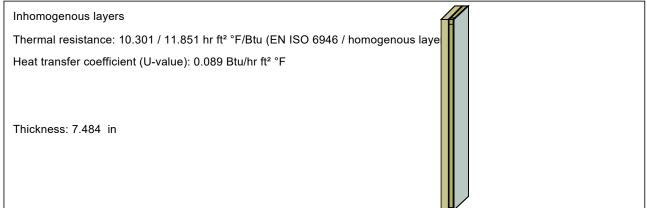
#### Assembly (Id.2): Uninsulated CMU Wall



144.52

0.19

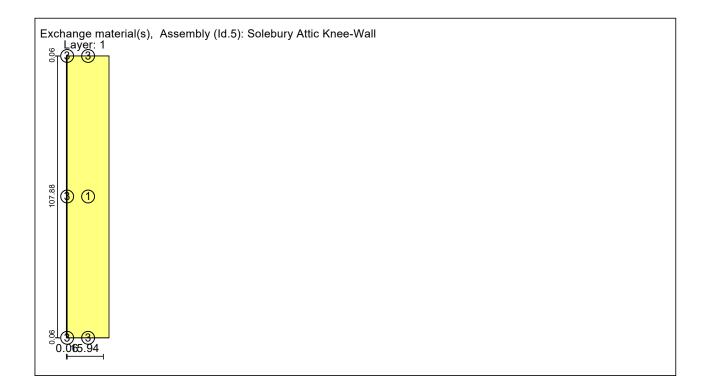
0.4235


9.449

#### Assembly (Id.7): Solebury Above Grade Wall Old Building

Concrete Brick

1


45



| Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Material/Layer<br>(from outside to inside)                                                                                                                                        | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F]           | Thickness<br>[in] | Color |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|-------------------------------|-------------------|-------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sandstone                                                                                                                                                                         | 138.84        | 0.18            | 0.973                         | 4                 |       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oriented Strand Board                                                                                                                                                             | 40.58         | 0.45            | 0.0532                        | 0.492             |       |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fibre Glass                                                                                                                                                                       | 1.87          | 0.2             | 0.0202                        | 2.5               |       |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gypsum Board (USA)                                                                                                                                                                | 53.06         | 0.21            | 0.0942                        | 0.492             |       |
| Exchange materials                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                   |               |                 |                               |                   |       |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spruce                                                                                                                                                                            | 24.97         | 0.45            | 0.0497                        |                   |       |
| 5       Spruce       24.97       0.45       0.0497          Exchange material(s), Assembly (id.7): Solebury Above Grade Wall Old Building<br>Layer: 3            9       9       9       9            9       9       9       9            9       9       9       9            9       9       9       9            9       9       9       9            9       9       9       9             9       9       9       9              9       9       9       9 |                                                                                                                                                                                   |               |                 |                               |                   |       |
| sse<br>Inhe<br>The                                                                                                                                                                                                                                                                                                                                                                                                                                               | omogenous layers<br>ermal resistance: 7.617 / 14.858 hr ft² °F/Btu (EN ISO 6946 /<br>at transfer coefficient (U-value): 0.117 Btu/hr ft² °F                                       | / homogenous  | s layers        |                               |                   |       |
| sse<br>Inhe<br>The                                                                                                                                                                                                                                                                                                                                                                                                                                               | omogenous layers<br>ermal resistance: 7.617 / 14.858 hr ft² °F/Btu (EN ISO 6946 /<br>at transfer coefficient (U-value): 0.117 Btu/hr ft² °F                                       | / homogenous  | s layers        | λ<br>[Btu/hr ft °F]           | Thickness<br>[in] | Color |
| ssel<br>Inhe<br>The<br>Hea                                                                                                                                                                                                                                                                                                                                                                                                                                       | omogenous layers<br>ermal resistance: 7.617 / 14.858 hr ft² °F/Btu (EN ISO 6946 /<br>at transfer coefficient (U-value): 0.117 Btu/hr ft² °F<br>ckness: 3.992 in<br>Material/Layer |               | C               | λ<br>[Btu/hr ft °F]<br>0.0202 |                   | Color |

Exchange materials

| 46<br>V 3 | Metal Deck, unperforated | 486.94 | 0.11 | 26.5784 |  |
|-----------|--------------------------|--------|------|---------|--|



#### Windows and Glass Doors

|      | Name | Orientation                                  | Area<br>[ft²] | Window type                                            |
|------|------|----------------------------------------------|---------------|--------------------------------------------------------|
| Wind | ows  | SE (9 %), SW (31 %), NE (38 %), NW (22<br>%) |               | Glazing: Reflective 2, Frame: Wood/Vinyl -<br>Operable |

# Window type (Id 1): Glazing: Reflective 2, Frame: Wood/Vinyl - Operable Basic data

| Uw -mounted [Btu/hr ft <sup>2</sup> °F]         | 0.4614 |  |  |  |
|-------------------------------------------------|--------|--|--|--|
| Frame factor                                    | 0.7859 |  |  |  |
| Glass U-value [Btu/hr ft² °F]                   | 0.45   |  |  |  |
| SHGC/Solar energy transmittance (perpendicular) | 0.45   |  |  |  |
| Frame data                                      |        |  |  |  |

| Setting                                   | Left | Right | Тор  | Bottom |
|-------------------------------------------|------|-------|------|--------|
| Frame width [in]                          | 3    | 3     | 3    | 3      |
| Frame U-value [Btu/hr ft² °F]             | .23  | .23   | .23  | .23    |
| Glazing-to-frame psi-value [Btu/hr ft °F] | .04  | .04   | .04  | .04    |
| Frame-to-Wall psi-value [Btu/hr ft °F]    | .029 | .029  | .029 | .029   |

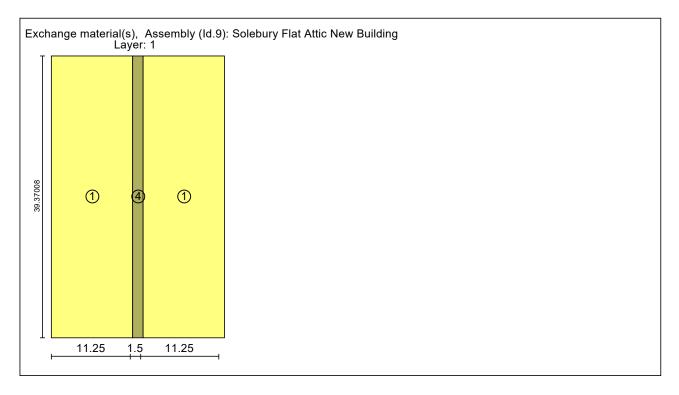
#### Solar radiation angle dependent data

| Angle<br>[°] | Total<br>solar<br>trans. |
|--------------|--------------------------|
| 0            | 0.22                     |

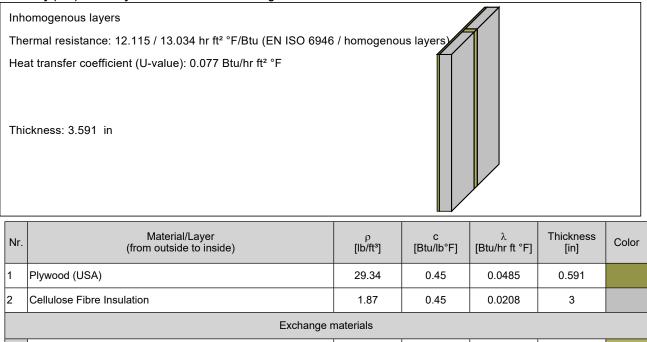
#### Doors

| Name         | Orientation                                   | Area<br>[ft²] | Short wave<br>radiation<br>absorption | Assembly      |
|--------------|-----------------------------------------------|---------------|---------------------------------------|---------------|
| Opaque Doors | SE (40 %), SW (11 %),<br>NE (30 %), NW (19 %) | 105.1         | 0.4                                   | Exterior Door |

#### Assembly (Id.1): Exterior Door


|      | nogenous layers                                         |               |                 |                     |                   |       |
|------|---------------------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|
| The  | rmal resistance: 3.333 hr ft² °F/Btu (without Rsi, Rse) |               |                 |                     |                   |       |
| Hea  | t transfer coefficient (U-value): 0.233 Btu/hr ft² °F   |               |                 |                     |                   |       |
| Thio | skness: 2.75 in                                         |               |                 |                     |                   |       |
| Nr.  | Material/Layer<br>(from outside to inside)              | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |
| 1    | Southern Yellow Pine                                    | 31.21         | 0.45            | 0.0688              | 2.75              |       |

## Ceilings


| Name                    | Area<br>[ft²] | Short wave<br>radiation<br>absorption | Assembly                             |
|-------------------------|---------------|---------------------------------------|--------------------------------------|
| Flat Attic New Building | 2,011.1       | 0.4                                   | Solebury Flat Attic New Building     |
| Cathedral Ceiling2      | 236           | 0.4                                   | Solebury Mech Loft Cathedral Ceiling |
| Floor over Sallyport    | 510.7         | 0.4                                   | Solebury Floor over Sallyport        |
| Flat Attic Old Building | 362           | 0.4                                   | Solebury Mech Loft Cathedral Ceiling |
| Total                   | 3,119.8       |                                       |                                      |

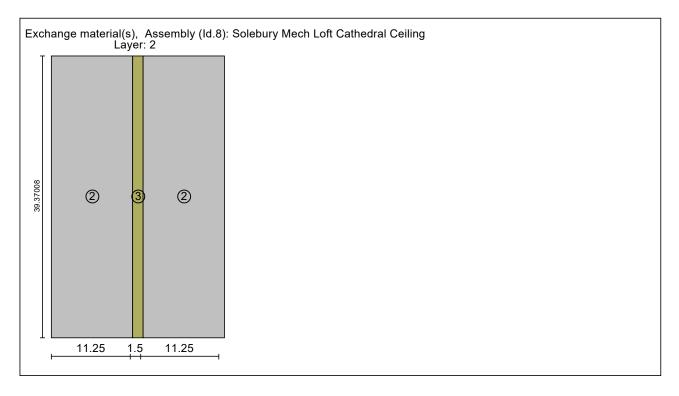
## Assembly (Id.9): Solebury Flat Attic New Building

|                                                                                             | iomogenous layers                                              |               |                 |                     |                   |       |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|
| Th                                                                                          | ermal resistance: 7.054 / 7.523 hr ft² °F/Btu (EN ISO 6946 / I | homogenous    | layers)         |                     |                   |       |
| Heat transfer coefficient (U-value): 0.127 Btu/hr ft <sup>2</sup> °F<br>Thickness: 7.898 in |                                                                |               |                 |                     |                   |       |
| Nr.                                                                                         | Material/Layer<br>(from outside to inside)                     | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |
| 1                                                                                           | Fibre Glass                                                    | 1.87          | 0.2             | 0.0202              | 1.5               |       |
| 2                                                                                           | Air Layer 150 mm                                               | 0.08          | 0.24            | 0.5431              | 5.906             |       |
| 3                                                                                           | Gypsum Board (USA)                                             | 53.06         | 0.21            | 0.0942              | 0.492             |       |
| Exchange materials                                                                          |                                                                |               |                 |                     |                   |       |
|                                                                                             | <b>0</b>                                                       |               |                 |                     |                   |       |



#### Assembly (Id.8): Solebury Mech Loft Cathedral Ceiling



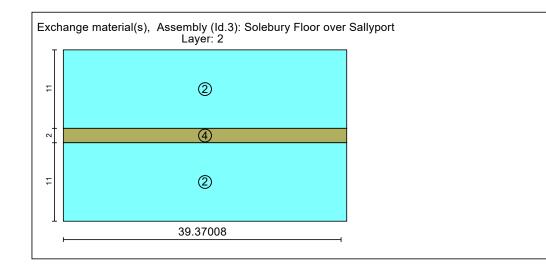

24.97

0.45

0.0497

---

3 Spruce




#### Assembly (Id.3): Solebury Floor over Sallyport

| Thickness: 12.992 in                                                                                                                   |       |
|----------------------------------------------------------------------------------------------------------------------------------------|-------|
| Nr.     Material/Layer<br>(from outside to inside)     ρ<br>[lb/ft³]     c<br>[Btu/lb°F]     λ<br>[Btu/hr ft °F]     Thickness<br>[in] | Color |

| INF.               | (from outside to inside)                              | [lb/ft <sup>3</sup> ] | [Btu/lb°F] | [Btu/hr ft °F] | [in]  | Color |
|--------------------|-------------------------------------------------------|-----------------------|------------|----------------|-------|-------|
| 1                  | Gypsum Board (USA)                                    | 53.06                 | 0.21       | 0.0942         | 0.492 |       |
| 2                  | Air Layer 90 mm; without additional moisture capacity | 0.08                  | 0.24       | 0.3022         | 12    |       |
| 3                  | Plywood (USA)                                         | 29.34                 | 0.45       | 0.0485         | 0.5   |       |
| Exchange materials |                                                       |                       |            |                |       |       |
| 4                  | Spruce                                                | 24.97                 | 0.45       | 0.0497         |       |       |

50



### **Space heating**

| Туре   | Performance ratio of heat<br>generator<br>[-] | Fuel type   |
|--------|-----------------------------------------------|-------------|
| Boiler | 1.06                                          | Natural Gas |

### Space cooling

| Туре      | Distribution                        | Capacity<br>[kBtu/hr] | СОР       |
|-----------|-------------------------------------|-----------------------|-----------|
| Heat pump | Recirculation air  Dehumidification | 480                   | 4.4   0.7 |
| Total     |                                     | 480                   |           |

### Water heating

| Туре         | Performance ratio of heat<br>generator<br>[-] | Fuel type   |
|--------------|-----------------------------------------------|-------------|
| User defined | 1.1                                           | Electricity |

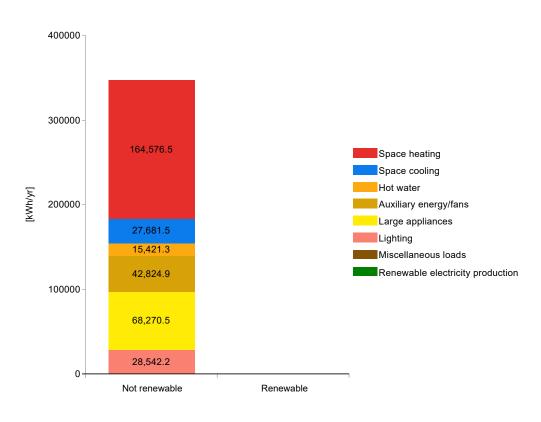
#### Water storage

| Nr | Capacity<br>[gal] |
|----|-------------------|
|----|-------------------|

#### Infiltration/Ventilation

ACH @ 50 Pascal **7.8** 1/hr CFM @ 50 Pascal **14,437.1** cfm

| Nr   | Sensible recovery<br>efficiency<br>[-] | Rate<br>[cfm] | Electric<br>efficiency<br>[W/cfm] | Fan<br>[W] | Defrost          | Temperature<br>below which<br>defrost must<br>be used<br>[°F] | Subsoil<br>heat exchanger<br>efficiency<br>[-] |
|------|----------------------------------------|---------------|-----------------------------------|------------|------------------|---------------------------------------------------------------|------------------------------------------------|
| 2    | 0.46                                   | 1,624.47      | 0.02                              | 909.71     | 909.71 yes 16.48 |                                                               | 0                                              |
| Tota | 0.33                                   | 1,624.47      |                                   | 909.71     |                  |                                                               |                                                |


## Lights and appliances

| Туре                            | Energy use<br>[kWh/yr] | In conditioned space |
|---------------------------------|------------------------|----------------------|
| Boiler heating auxiliary energy | 503.19                 | no                   |
| Other                           | 0                      | no                   |
| DHW circulating pump            | 5,301.65               | yes                  |
| Heating system circulation pump | 6,672.16               | yes                  |
| Heating system circulation pump | 1,592.82               | yes                  |
| Other                           | 10,857.6               | yes                  |
| Ventilation winter              | 6,313.42               | yes                  |
| Ventilation Defrost             | 4,357.98               | yes                  |
| Ventilation summer              | 7,226.03               |                      |
| Total                           | 42,824.87              |                      |

## SITE ENERGY REPORT

| Dreight norma                                         | Fristing Prilding Organities  |
|-------------------------------------------------------|-------------------------------|
| Project name                                          | Existing Building Conditions  |
| Climate                                               | WILLOW GROVE NAS PA           |
| Туре                                                  | Non-residential               |
| Interior conditioned floor area                       | <b>13,988</b> ft <sup>2</sup> |
| Number of units                                       | 1                             |
| Occupants                                             | 25                            |
| Site energy use                                       | <b>1,184,977.5</b> kBtu/yr    |
| Specific site energy use                              | <b>84.7</b> kBtu/ft²yr        |
| Site energy use                                       | <b>347,316.9</b> kWh/yr       |
| Specific site energy use                              | <b>24.8</b> kWh/ft²yr         |
| Site energy use per person                            | 13,892.7 kWh/Person yr        |
| Net site energy use (with 100% renewables)            | 1,184,977.5 kBtu/yr           |
| Specific net site energy use (with 100% renewables)   | <b>84.7</b> kBtu/ft²yr        |
| Net site energy use (with 100% renewables)            | <b>347,316.9</b> kWh/yr       |
| Specific net site energy use (with 100% renewables)   | <b>24.8</b> kWh/ft²yr         |
| Net site energy use per person (with 100% renewables) | <b>13,892.7</b> kWh/Person yr |

### **OVERVIEW**



# SITE ENERGY REPORT

#### TOTAL USE BY TYPE

| Туре                             | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr]             |
|----------------------------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|----------------------------------|
| Space heating                    | 164,576.5               | 11.8                                    | 561,503                  | 40.1                                     |                                  |
| Space cooling                    | 27,681.5                | 2                                       | 94,443.9                 | 6.8                                      |                                  |
| Hot water                        | 15,421.3                | 1.1                                     | 52,614.4                 | 3.8                                      |                                  |
| Auxiliary energy/fans            | 42,824.9                | 3.1                                     | 146,110.1                | 10.4                                     |                                  |
| Large appliances                 | 68,270.5                | 4.9                                     | 232,925.6                | 16.7                                     |                                  |
| Lighting                         | 28,542.2                | 2                                       | 97,380.5                 | 7                                        |                                  |
| Miscellaneous loads              | 0                       | 0                                       | 0                        | 0                                        |                                  |
| Renewable electricity production | 0                       | 0                                       | 0                        | 0                                        | 0 50000 100000 150000 200000     |
| Total                            | 347,316.9               | 24.8                                    | 1,184,977.5              | 84.7                                     | Renewable electricity production |

### **SPACE HEATING**

| Туре   | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr]         |
|--------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|------------------------------|
| Boiler | 164,576.5               | 11.8                                    | 561,503                  | 40.1                                     |                              |
| Total  | 164,576.5               | 11.8                                    | 561,503                  | 40.1                                     | 0 50000 100000 150000 200000 |

### SPACE COOLING

| Туре                  | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr]          |
|-----------------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|-------------------------------|
| Recirculation Cooling | 19,836.2                | 1.4                                     | 67,677.4                 | 4.8                                      |                               |
| Dehumidification      | 7,845.3                 | 0.6                                     | 26,766.5                 | 1.9                                      |                               |
| Total                 | 27,681.5                | 2                                       | 94,443.9                 | 6.8                                      | Ġ 5000 10000 15000 20000<br>J |

### DHW

| Туре         | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site   | e energy [kW | /h/yr] |       |
|--------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|--------|--------------|--------|-------|
| User defined | 15,421.3                | 1.1                                     | 52,614.4                 | 3.8                                      |        |              |        |       |
| Total        | 15,421.3                | 1.1                                     | 52,614.4                 | 3.8                                      | 0 5000 | 10000        | 15000  | 20000 |

### AUXILIARY ENERGY/FANS

| Туре                            | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr]   |
|---------------------------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|------------------------|
| Boiler heating auxiliary energy | 503.2                   | 0                                       | 1,716.8                  | 0.1                                      |                        |
| Other                           | 0                       | 0                                       | 0                        | 0                                        |                        |
| DHW circulating pump            | 5,301.7                 | 0.4                                     | 18,088.2                 | 1.3                                      |                        |
| Heating system circulation pump | 6,672.2                 | 0.5                                     | 22,764.1                 | 1.6                                      |                        |
| Heating system circulation pump | 1,592.8                 | 0.1                                     | 5,434.4                  | 0.4                                      |                        |
| Other                           | 10,857.6                | 0.8                                     | 37,044                   | 2.6                                      |                        |
| Ventilation winter              | 6,313.4                 | 0.5                                     | 21,540.2                 | 1.5                                      |                        |
| Ventilation Defrost             | 4,358                   | 0.3                                     | 14,868.6                 | 1.1                                      |                        |
| Ventilation summer              | 7,226                   | 0.5                                     | 24,653.8                 | 1.8                                      |                        |
| Total                           | 42,824.9                | 3.1                                     | 146,110.1                | 10.4                                     | 0 3000 6000 9000 12000 |

# SITE ENERGY REPORT

### LARGE APPLIANCES

| Туре         | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr] |      |       | /h/yr] |       |
|--------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|----------------------|------|-------|--------|-------|
| Refrigerator | 1,197.2                 | 0.1                                     | 4,084.6                  | 0.3                                      |                      |      |       |        |       |
| PC           | 7,482.5                 | 0.5                                     | 25,528.8                 | 1.8                                      |                      |      |       |        |       |
| Monitor      | 1,916.3                 | 0.1                                     | 6,537.9                  | 0.5                                      |                      |      |       |        |       |
| Printer      | 9,307.5                 | 0.7                                     | 31,755.4                 | 2.3                                      |                      |      |       |        |       |
| Server       | 19,272                  | 1.4                                     | 65,752.3                 | 4.7                                      |                      |      |       |        |       |
| User defined | 29,095                  | 2.1                                     | 99,266.6                 | 7.1                                      |                      |      |       |        |       |
| Total        | 68,270.5                | 4.9                                     | 232,925.6                | 16.7                                     | 3 0                  | 3000 | 16000 | 24000  | 32000 |

### LIGHTING

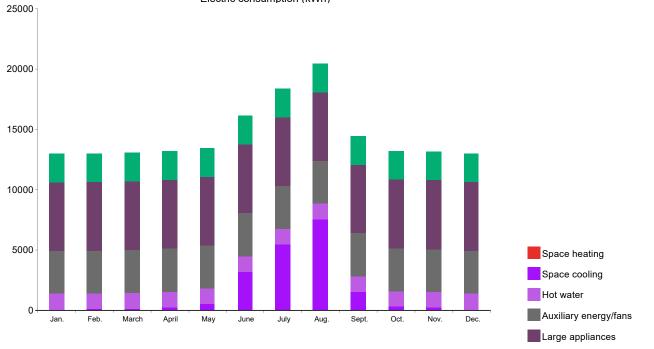
| Туре     | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr]        |
|----------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|-----------------------------|
| Lighting | 4,713.4                 | 0.3                                     | 16,081.2                 | 1.1                                      |                             |
| Lighting | 8,117.5                 | 0.6                                     | 27,695.4                 | 2                                        |                             |
| Lighting | 9,950.5                 | 0.7                                     | 33,949.2                 | 2.4                                      |                             |
| Lighting | 5,760.8                 | 0.4                                     | 19,654.8                 | 1.4                                      |                             |
| Total    | 28,542.2                | 2                                       | 97,380.5                 | 7                                        | 0 3000 6000 9000 12000<br>I |

### **MISC LOADS**

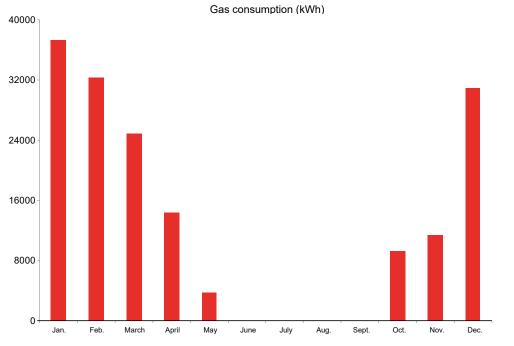
| Туре  | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] |
|-------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|
| Total | 0                       | 0                                       | 0                        | 0                                        |

# SITE ENERGY MONTHLY REPORT

### SITE ENERGY MONTHLY REPORT


#### ELECTRICITY USE [kWh]

| Туре                             | Jan.         | Feb.         | March        | April        | May          | June         | July         | Aug.         | Sept.        | Oct.         | Nov.         | Dec.         |
|----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Space heating                    | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| Space cooling                    | 110.88       | 120.19       | 177.21       | 280.38       | 568.01       | 3,235.6      | 5,494.1<br>1 | 7,582.1<br>1 | 1,542.3<br>4 | 327.27       | 264.95       | 115.62       |
| Hot water                        | 1,285.1<br>1 | 1,285.1<br>1 | 1,285.1<br>1 | 1,285.1<br>1 | 1,285.1<br>1 | 1,285.1      | 1,285.1      | 1,285.1<br>1 | 1,285.1      | 1,285.1<br>1 | 1,285.1<br>1 | 1,285.1<br>1 |
| Auxiliary energy/fans            | 3,568.7<br>4 |
| Large appliances                 | 5,689.2<br>1 |
| Lighting                         | 2,378.5      | 2,378.5<br>2 | 2,378.5<br>2 | 2,378.5<br>2 | 2,378.5<br>2 | 2,378.5      | 2,378.5<br>2 | 2,378.5<br>2 | 2,378.5      | 2,378.5<br>2 | 2,378.5<br>2 | 2,378.5<br>2 |
| Miscellaneous loads              | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| Renewable electricity production | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |


#### GAS USE [kWh]

| Туре                             | Jan.          | Feb.          | March         | April         | May          | June | July | Aug. | Sept. | Oct.         | Nov.          | Dec.          |
|----------------------------------|---------------|---------------|---------------|---------------|--------------|------|------|------|-------|--------------|---------------|---------------|
| Space heating                    | 37,391.<br>74 | 32,359.<br>09 | 24,891.<br>74 | 14,420.<br>68 | 3,755.8<br>7 | 0    | 0    | 0    | 0     | 9,293.9<br>3 | 11,469.<br>13 | 30,930.<br>05 |
| Space cooling                    | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0             | 0             |
| Hot water                        | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0             | 0             |
| Auxiliary energy/fans            | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0             | 0             |
| Large appliances                 | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0             | 0             |
| Lighting                         | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0             | 0             |
| Miscellaneous loads              | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0             | 0             |
| Renewable electricity production | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0             | 0             |

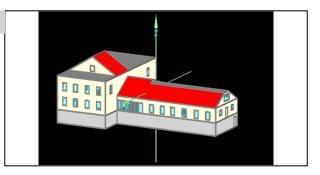
## SITE ENERGY MONTHLY REPORT



Electric consumption (kWh)






# This page begins reporting on the model with potential upgrades.

### **BUILDING INFORMATION**

| Category:             | Non-re      | sidential  |  |
|-----------------------|-------------|------------|--|
| Status:               | In Planning |            |  |
| Building type:        | Retrofi     | t          |  |
| Year of construction: | TBD         |            |  |
| Units:                | 1           |            |  |
| Number of occupants:  | 25 (Des     | sign)      |  |
| Occupant density:     | 559.5       | ft²/Person |  |
|                       |             |            |  |

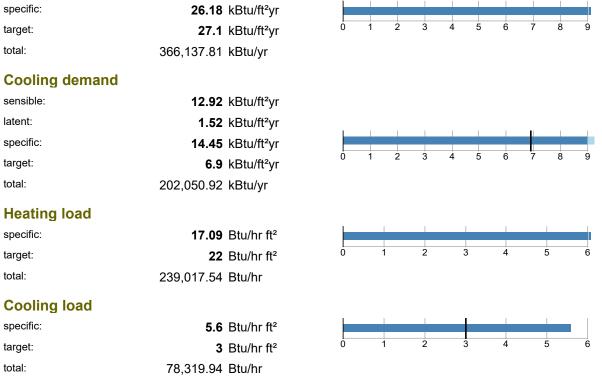
#### **Boundary conditions**

| Climate:              | WILLOW GROVE NAS PA        |  |
|-----------------------|----------------------------|--|
| Internal heat gains:  | 2.9 Btu/hr ft <sup>2</sup> |  |
| Interior temperature: | <b>70</b> °F               |  |
| Overheat temperatur   | e: <b>77</b> °F            |  |



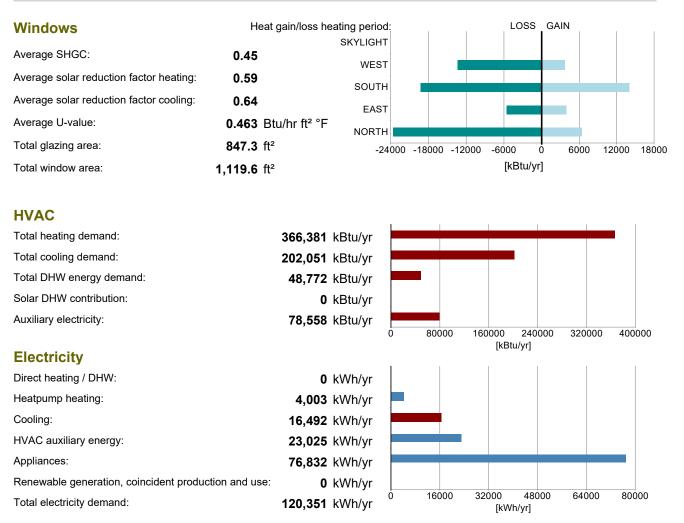
#### **Building geometry**

| Enclosed volume:     | 145,421.4 | ft³  |
|----------------------|-----------|------|
| Net-volume:          | 110,520.3 | ft³  |
| Total area envelope: | 21,277.6  | ft²  |
| Area/Volume Ratio:   | 0.1       | 1/ft |
| Floor area:          | 13,988    | ft²  |
| Envelope area/iCFA:  | 1.521     |      |


#### **PASSIVEHOUSE REQUIREMENTS**

#### **Certificate criteria:**

## Heating demand


| Building Peer Group Data. See Page 91. |
|----------------------------------------|
|                                        |

Heating/Cooling Demand Targets from CBECS



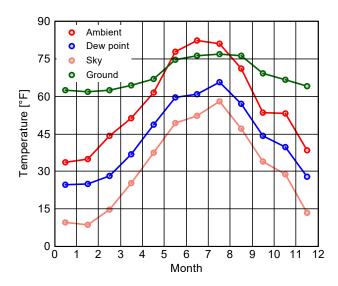
WUFI®Passive V.3.3.0.2: Frank Swol/EAM Associates

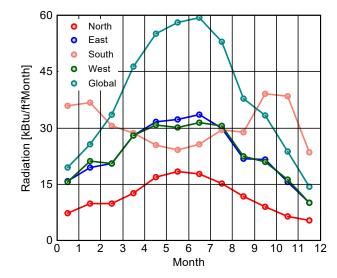
### **BUILDING ELEMENTS**



### **HEAT FLOW - HEATING PERIOD**

#### **Heat gains**


| Solar:<br>Inner sources:<br>Credit of thermal bridges:<br>Mechanical heating: | 59,221 kBtu/yr<br>200,565 kBtu/yr<br>0 kBtu/yr<br>366,138 kBtu/yr | Mechanical heating 54 % -                              |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|
| Heat losses<br>Opaque building envelope:                                      | <b>311,020</b> kBtu/yr                                            | Credit of thermal bridges 0 %                          |
| Windows & Doors:<br>Natural ventilation:<br>Mechanical ventilation:           | 78,113 kBtu/yr<br>115,881 kBtu/yr<br>120,910 kBtu/yr              | -Opaque building envelope 50 %<br>Windows & Doors 12 % |


### CLIMATE

| Latitude:                       | 40.2  | 0        |
|---------------------------------|-------|----------|
| Longitude:                      | -75.2 | 0        |
| Elevation of weather station:   | 334.6 | ft       |
| Elevation of building site:     | 334.6 | ft       |
| Heat capacity air:              | 0.018 | Btu/ft³F |
| Daily temperature swing summer: | 20    | °F       |
| Average wind speed:             | 13.1  | ft/s     |

### Ground

| Average ground surface temperature:   | 58.7 | °F           |
|---------------------------------------|------|--------------|
| Amplitude ground surface temperature: | 56.3 | °F           |
| Ground thermal conductivity:          | 1.2  | Btu/hr ft °F |
| Ground heat capacity:                 | 29.8 | Btu/ft³F     |
| Depth below grade of groundwater:     | 9.8  | ft           |
| Flow rate groundwater:                | 0.2  | ft/d         |

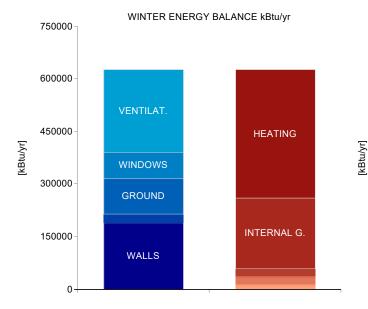




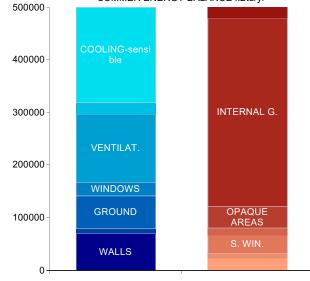
## **Calculation parameters**

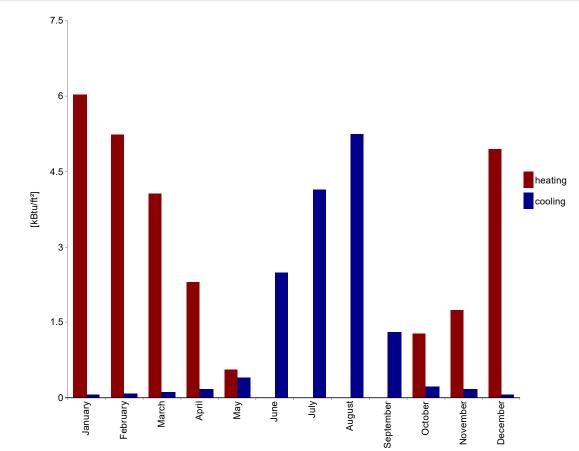
| Length of heating period                            | <b>243</b> days/yr |
|-----------------------------------------------------|--------------------|
| Heating degree hours                                | <b>111.1</b> kFh/a |
| Phase shift months                                  | <b>0.7</b> mths    |
| Time constant heating demand                        | <b>20.9</b> hr     |
| Time constant cooling demand                        | <b>0</b> hr        |
| Time constant cooling demand with night ventilation | <b>0</b> hr        |

| Climate for                         | Heating load 1 | Heating load 2 | Cooling |
|-------------------------------------|----------------|----------------|---------|
| Temperature [°F]                    | 23.4           | 31.3           | 81.5    |
| Solar radiation North [Btu/hr ft²]  | 9.5            | 7.9            | 24.4    |
| Solar radiation East [Btu/hr ft²]   | 22.5           | 16.8           | 42.2    |
| Solar radiation South [Btu/hr ft²]  | 51.4           | 33             | 39.3    |
| Solar radiation West [Btu/hr ft²]   | 20.9           | 14.6           | 46      |
| Solar radiation Global [Btu/hr ft²] | 24.7           | 18.1           | 84.3    |


Relevant boundary conditions for heating load calculation: Heating load 1

### ANNUAL HEAT DEMAND


| Transmission losses :        | 389,133  | kBtu/yr   |
|------------------------------|----------|-----------|
| Ventilation losses:          | 236,791  | kBtu/yr   |
| Total heat losses:           | 625,923  | kBtu/yr   |
| Solar heat gains:            | 70,077   | kBtu/yr   |
| Internal heat gains:         | 237,331  | kBtu/yr   |
| Total heat gains:            | 307,409  | kBtu/yr   |
| Utilization factor:          | 84.5     | %         |
| Useful heat gains:           | 259,786  | kBtu/yr   |
| Annual heat demand:          | 366,138  | kBtu/yr   |
| Specific annual heat demand: | 26,177.7 | Btu/ft²yr |

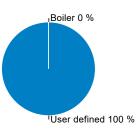

### ANNUAL COOLING DEMAND

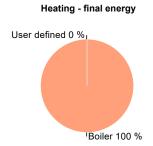
| Solar heat gains:               | 121,000   | kBtu/yr    |
|---------------------------------|-----------|------------|
| Internal heat gains:            | 356,485   | kBtu/yr    |
| Total heat gains:               | 477,485   | kBtu/yr    |
| Transmission losses :           | 651,277   | kBtu/yr    |
| Ventilation losses:             | 509,283   | kBtu/yr    |
| Total heat losses:              | 1,160,560 | kBtu/yr    |
| Utilization factor:             | 25.6      | %          |
| Useful heat losses:             | 296,711   | kBtu/yr    |
| Cooling demand - sensible:      | 180,774   | kBtu/yr    |
| Cooling demand - latent:        | 21,277    | kBtu/yr    |
| Annual cooling demand:          | 202,051   | kBtu/yr    |
| Specific annual cooling demand: | 14.4      | kBtu/ft²yr |











## SPECIFIC HEAT/COOLING DEMAND MONTHLY

| Month     | Heating<br>[kBtu/ft²] | Cooling<br>[kBtu/ft²] |
|-----------|-----------------------|-----------------------|
| January   | 6                     | 0.1                   |
| February  | 5.2                   | 0.1                   |
| March     | 4.1                   | 0.1                   |
| April     | 2.3                   | 0.2                   |
| Мау       | 0.6                   | 0.4                   |
| June      | 0                     | 2.5                   |
| July      | 0                     | 4.1                   |
| August    | 0                     | 5.3                   |
| September | 0                     | 1.3                   |
| October   | 1.3                   | 0.2                   |
| November  | 1.7                   | 0.2                   |
| December  | 5                     | 0.1                   |

|                                    | DHW                             |                                       |                                        |                                     | Heating                               |                                        | Total                |                                           |                                         |  |
|------------------------------------|---------------------------------|---------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|----------------------|-------------------------------------------|-----------------------------------------|--|
| System                             | Covered<br>DHW<br>demand<br>[%] | Estimated<br>solar<br>fraction<br>[%] | Final<br>energy<br>demand<br>[kBtu/yr] | Covered<br>heating<br>demand<br>[%] | Estimated<br>solar<br>fraction<br>[%] | Final<br>energy<br>demand<br>[kBtu/yr] | Performance<br>ratio | CO2<br>equivalent<br>emissions<br>[lb/yr] | Source<br>energy<br>demand<br>[kBtu/yr] |  |
| Boiler, Lochinvar Knight XL Boiler | 0                               | 0                                     | 0                                      | 100                                 | 0                                     | 390,230.2                              | 0                    | 63,039.2                                  | 429,253.2                               |  |
| User defined, Trane Chiller        | 100                             | 0                                     | 13,656.1                               | 0                                   | 0                                     | 0                                      | 0.3                  | 20.5                                      | 24,581                                  |  |
| Σ                                  | 100                             | 0                                     | 13,656.1                               | 100                                 | 0                                     | 390,230.2                              |                      | 63,059.7                                  | 453,834.2                               |  |







#### **COOLING UNITS**

| sensible                     |                     | latent                |
|------------------------------|---------------------|-----------------------|
| Air cooling:                 | <b>0</b> kBtu/ft²yr | <b>0</b> kBtu/ft²yr   |
| Recirculation cooling:       | 12.9 kBtu/ft²yr     | <b>0.4</b> kBtu/ft²yr |
| Additional dehumidification: |                     | <b>1.4</b> kBtu/ft²yr |
| Panel cooling:               | <b>0</b> kBtu/ft²yr |                       |
| Sum:                         | 12.9 kBtu/ft²yr     | 1.7 kBtu/ft²yr        |

#### Boiler

| Boiler type:                 | Gas            |
|------------------------------|----------------|
| Condensing:                  | yes            |
| In thermal envelope:         | no             |
| Boiler output:               | 658,000 Btu/hr |
| Efficiency at 30% load:      | <b>98</b> %    |
| Efficiency at normal output: | <b>94</b> %    |
| Heatloss at 70°C standby:    | 0.5 %          |
|                              |                |

## VENTILATION

### Energy transportable by supply air

| Heating energy<br>transportable:             | 3.27 W/ft <sup>2</sup>        |               | I |   | I |   | I |
|----------------------------------------------|-------------------------------|---------------|---|---|---|---|---|
|                                              |                               | 0 1           | 2 | 3 | 4 | 5 | 6 |
| load:                                        | <b>5.01</b> W/ft <sup>2</sup> | 0 1           | 2 | 3 | 4 | 5 | 0 |
| Cooling energy                               |                               |               |   |   |   |   |   |
| transportable:                               | 1.94 W/ft <sup>2</sup>        |               |   |   |   |   |   |
| load:                                        | <b>1.64</b> W/ft <sup>2</sup> | 0 1           | 2 | 3 | 4 | 5 | 6 |
|                                              |                               |               |   |   |   |   |   |
| Infiltration pressure test ACH50:            | 5.88                          | 3 1/hr        |   |   |   |   |   |
| Total extract air demand:                    | 2,760                         | ) cfm         |   |   |   |   |   |
| Supply air per person:                       | 18                            | cfm           |   |   |   |   |   |
| Occupancy:                                   | 25                            | 5             |   |   |   |   |   |
|                                              |                               |               |   |   |   |   |   |
| Average air flow rate:                       | 1,978.27                      | <b>c</b> fm   |   |   |   |   |   |
| Average air change rate:                     | 1.07                          | <b>1</b> /hr  |   |   |   |   |   |
| Effective ACH ambient:                       | 0.84                          | 1/hr          |   |   |   |   |   |
| Effective ACH ground:                        | 0                             | ) 1/hr        |   |   |   |   |   |
| Energetically effective air exchange:        | 0.84                          | 1/hr          |   |   |   |   |   |
| Infiltration air change rate:                | 0.41                          | 1/hr          |   |   |   |   |   |
| Infiltration air change rate (heating load): | 1.03                          | <b>3</b> 1/hr |   |   |   |   |   |
| Type of ventilation system:                  | Balanced ventilation          |               |   |   |   |   |   |

| Type of Ventilation Cyclonic    | Dalanceu ventilation |
|---------------------------------|----------------------|
| Wind screening coefficient (e): | 0.07                 |
| Wind exposure factor:           | 15                   |
| Wind shield factor:             | 0.05                 |

#### Ventilation heat losses:

#### 196,238.59 kBtu/yr

Devices

| Name                       | Sensible recovery<br>efficiency<br>[-] |     | Electric efficiency<br>[W/cfm] |                            | Heat recovery<br>efficiency SHX<br>[-] | Effective recovery<br>efficiency<br>[-] |  |  |
|----------------------------|----------------------------------------|-----|--------------------------------|----------------------------|----------------------------------------|-----------------------------------------|--|--|
| Greenheck ERVs             | 0.8 0.03                               |     | 0                              | 0.8                        |                                        |                                         |  |  |
| Altogether                 | 0.6                                    |     | 0.02                           |                            | 0                                      | 0.6                                     |  |  |
| Ducts                      |                                        |     |                                |                            |                                        |                                         |  |  |
| Name                       | Length<br>(total)<br>[ft]              |     | ear<br>section<br>²]           | U-value<br>[Btu/hr ft² °F] | Assigned<br>ventilation units          |                                         |  |  |
| Supply / outdoor air duct  | 15                                     | 1.3 | 889                            | 4.58                       | Greenheck ERVs                         |                                         |  |  |
| Extract / Exhaust air duct | 15                                     | 1.3 | 889                            | 4.58                       | Greenheck ERVs                         |                                         |  |  |
| Σ                          | 30                                     |     |                                |                            |                                        |                                         |  |  |
| *                          | length * quantity                      |     | **                             | thermal conductivit        | ty / thickness                         |                                         |  |  |

ngth \* quantity

ity /

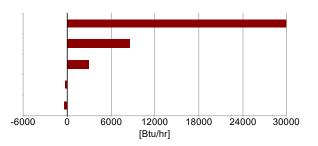
## **ELECTRICITY DEMAND - AUXILIARY ELECTRICITY**

| Туре                            | Quantity | Indoor | Norm<br>demand | Electric<br>demand<br>[kWh/yr] | Source<br>energy<br>[kBtu/yr] | ] | EI   | ectric dema      | nd   |      |
|---------------------------------|----------|--------|----------------|--------------------------------|-------------------------------|---|------|------------------|------|------|
| Boiler heating auxiliary energy | 1        | no     | 187.5 W        | 348                            | 2137.2                        |   |      |                  |      |      |
| Other                           | 1        | no     | 0 W            | 0                              | 0                             |   |      |                  |      |      |
| DHW circulating pump            | 1        | yes    | 377 W          | 2650.8                         | 16279.4                       |   |      |                  |      |      |
| Heating system circulation pump | 1        | yes    | 1,131 W        | 3336.1                         | 20487.7                       |   |      |                  |      |      |
| Heating system circulation pump | 18       | yes    | 30 W           | 1592.8                         | 9781.9                        |   |      |                  |      |      |
| Other                           | 1        | yes    | 1,885 W        | 5428.8                         | 33339.6                       |   |      |                  |      |      |
| Ventilation winter              | 1        | yes    | 0.4 W/cfm      | 3472.4                         | 21324.8                       |   |      |                  |      |      |
| Ventilation Defrost             | 1        | yes    | 10,251.9 W     | 2222                           | 13645.7                       |   |      | I                |      |      |
| Ventilation summer              | 1        | yes    | 0.4 W/cfm      | 3974.3                         | 24407.3                       |   |      |                  |      |      |
| Σ                               |          |        |                | 23025.2                        | 141403.6                      | 0 | 1500 | 3000<br>[kWh/yr] | 4500 | 6000 |

### ELECTRICITY DEMAND NON-RESIDENTIAL BUILDING

#### Equipment

| Туре         | Quantity | Indoor | Utilization pattern               | Power rating<br>norm demand | Electric<br>demand<br>[kWh/yr] | Source<br>energy<br>[kBtu/yr] |      | Electric | dema          | nd  |     |       |
|--------------|----------|--------|-----------------------------------|-----------------------------|--------------------------------|-------------------------------|------|----------|---------------|-----|-----|-------|
| PC           | 25       | yes    | Pattern 1: Government<br>Building | 82 (+82) W                  | 6,150 (+0)                     | 37768.7                       |      |          |               |     |     |       |
| Monitor      | 25       | yes    | Pattern 1: Government<br>Building | 21 (+21) W                  | 1,575 (+0)                     | 9672.5                        |      |          |               |     |     |       |
| Printer      | 6        | yes    | Pattern 1: Government<br>Building | 425 (+425) W                | 765 (+6,885)                   | 46980.6                       |      |          |               |     |     |       |
| Server       | 1        | yes    | Pattern 1: Government<br>Building | 2,200 (+2,200) W            | 6,600<br>(+12,672)             | 118354.1                      |      |          |               |     |     |       |
| User defined | 1        | yes    |                                   | 13,988 (+0) W               | 29,095 (+0)                    | 178679.9                      |      |          |               |     |     |       |
| Refrigerator | 2        | yes    |                                   | 1.6 kWh/d                   | 1197.2                         | 7352.3                        |      |          |               |     |     |       |
| Σ            | 60       |        |                                   |                             | 45,382.2<br>(+19,557)          | 398808                        | 0 80 |          | 000<br>'h/yr] | 240 | 000 | 32000 |
| V            |          |        |                                   |                             |                                |                               |      | [        | 1             |     |     |       |


#### Lighting

| Name       | Utilization pattern               | Installed<br>lighting<br>power<br>[W/ft²] | Daylight<br>utilization | Lighting<br>full load<br>hours<br>[hrs/yr] | Electric<br>demand<br>[kWh/yr] | Source<br>energy<br>[kBtu/yr] | Electric demand                 |     |
|------------|-----------------------------------|-------------------------------------------|-------------------------|--------------------------------------------|--------------------------------|-------------------------------|---------------------------------|-----|
| Lighting 1 | Pattern 1: Government<br>Building | 0.5                                       | Low                     | 3120                                       | 1963.9                         | 12060.9                       |                                 |     |
| Lighting 2 | Pattern 1: Government<br>Building | 0.5                                       | Low                     | 1560                                       | 3382.3                         | 20771.5                       |                                 |     |
| Lighting 3 | Pattern 1: Government<br>Building | 0.5                                       | Low                     | 1560                                       | 4146                           | 25461.9                       |                                 |     |
| Lighting 4 | Pattern 1: Government<br>Building | 0.5                                       | Low                     | 1560                                       | 2400.3                         | 14741.1                       |                                 |     |
| Σ          |                                   |                                           |                         |                                            | 11892.6                        | 73035.4                       | 0 1125 2250 3375 45<br>[kWh/yr] | 500 |

## INTERNAL HEAT GAINS

### Heating season

| Electricity total:            | 29,927.1 | Btu/hr     |
|-------------------------------|----------|------------|
| Auxiliary electricity:        | 8,569.4  | Btu/hr     |
| People:                       | 2,921.4  | Btu/hr     |
| Cold water:                   | -280.9   | Btu/hr     |
| Evaporation:                  | -438.2   | Btu/hr     |
| Σ:                            | 40,698.7 | Btu/hr     |
| Specific internal heat gains: | 2.9      | Btu/hr ft² |



### **Cooling season**

| Electricity total:            | 29,927.1 Btu/hr            |       |   |      |                   |       |       |       |
|-------------------------------|----------------------------|-------|---|------|-------------------|-------|-------|-------|
| Auxiliary electricity:        | 5,496.7 Btu/hr             |       |   |      |                   |       |       |       |
| People:                       | <b>2,921.4</b> Btu/hr      |       |   |      |                   |       |       |       |
| Cold and hot water:           | -280.9 Btu/hr              |       | 4 |      |                   |       |       |       |
| Evaporation:                  | -438.2 Btu/hr              |       |   |      |                   |       |       |       |
| Σ:                            | 40,698.7 Btu/hr            | -6000 | 0 | 6000 | 12000<br>[Btu/hr] | 18000 | 24000 | 30000 |
| Specific internal heat gains: | 2.9 Btu/hr ft <sup>2</sup> |       |   |      |                   |       |       |       |

# **BUILDING ANALYSIS**

## DHW AND DISTRIBUTION

| DHW consumption per person per day:<br>Average cold water temperature supply: | 3.2<br>58.7      | gal/Person/day<br>°F |
|-------------------------------------------------------------------------------|------------------|----------------------|
| Useful heat DHW:<br>Specific useful heat DHW:                                 | 6,921.1<br>494.8 | kBtu/yr<br>Btu/ft²yr |
| Total heat losses of the DHW system:                                          | 41,850.8         | kBtu/yr              |
| Specific losses of the DHW system:                                            | 2,992.2          | Btu/ft²yr            |
| Performance ratio DHW distribution system and storage:                        | 7                |                      |
| Utilization ratio DHW distribution system and storage:                        | 0.1              |                      |
| Total heat demand of DHW system:                                              | 48,771.9         | kBtu/yr              |
| Total specific heat demand of DHW system:                                     | 3,487            | Btu/ft²yr            |
| Total heat losses of the hydronic heating distribution:                       | 242.8            | kBtu/yr              |
| Specific losses of the hydronic heating distribution:                         | 17.4             | Btu/ft²yr            |
| Performance ratio of heat distribution:                                       | 100.1            | %                    |

| Region                              | Length<br>[ft] | Annual heat loss<br>[kBtu/yr] |  |  |  |  |
|-------------------------------------|----------------|-------------------------------|--|--|--|--|
| Hydronic heating distribution pipes |                |                               |  |  |  |  |
| In conditioned space                | 715            | 242.8                         |  |  |  |  |
| Σ                                   | 715            | 242.8                         |  |  |  |  |
| DHW circulation pipes               |                |                               |  |  |  |  |
| In conditioned space                | 430            | 37148.5                       |  |  |  |  |
| Σ                                   | 430            | 37148.5                       |  |  |  |  |
| Individual pipes                    |                |                               |  |  |  |  |
| In conditioned space                |                | 0                             |  |  |  |  |
| Σ                                   |                | 0                             |  |  |  |  |
| Water storage                       | Water storage  |                               |  |  |  |  |
| Σ                                   |                | 0                             |  |  |  |  |

## **Property/Site**

| Building name        | Solebury Township Municipal Building |
|----------------------|--------------------------------------|
| Property information |                                      |
| Owner's name         | Solebury Township                    |
| Property address     | 3092 Sugan Road                      |
| City                 | Solebury                             |
| Zip                  | 18963                                |
| Site information     |                                      |
| Climate Location     | WILLOW GROVE NAS PA                  |
|                      |                                      |

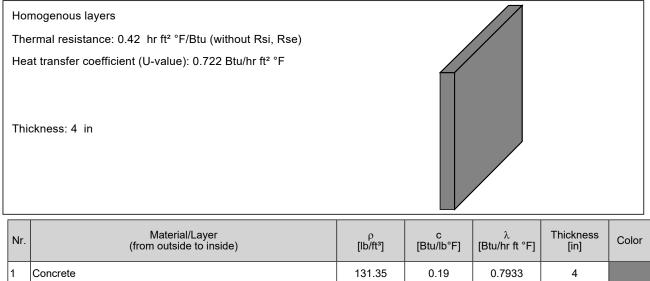
# Building

## **Building Information**

| Area of Conditioned Space   | <b>13,988</b> ft <sup>2</sup>    |                                           |
|-----------------------------|----------------------------------|-------------------------------------------|
| Volume of conditioned space | <b>110,520.3</b> ft <sup>3</sup> |                                           |
| Number of bedrooms          | 4                                |                                           |
| Foundation Type             | Heated basement, o               | or underground floor slab / Slab on grade |
| Winter setpoint temperature | <b>70</b> °F                     |                                           |
| Summer setpoint temperature | <b>77</b> °F                     |                                           |

## Below grade walls

| Name                       | Area<br>[ft²] | Assembly             |
|----------------------------|---------------|----------------------|
| Below Grade Basement Walls | 1,455.9       | Uninsulated CMU Wall |


#### Assembly (Id.2): Uninsulated CMU Wall

| Th<br>He | mogenous layers<br>ermal resistance: 1.859 hr ft² °F/Btu (without Rsi, Rse)<br>at transfer coefficient (U-value): 0.385 Btu/hr ft² °F<br>ckness: 9.449 in |               |                 |                     |                   |       |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|
| Nr       | Material/Layer<br>(from outside to inside)                                                                                                                | م<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |
| 1        | Concrete Brick                                                                                                                                            | 144.52        | 0.19            | 0.4235              | 9.449             |       |

#### **Slab floor**

| Name | Area<br>[ft²] | Assembly                |
|------|---------------|-------------------------|
| Slab | 4,540.7       | 4" concrete Uninsulated |

#### Assembly (Id.4): 4" concrete Uninsulated



#### Heated basement, or underground floor slab

| Floor slab area                       | <b>2,271</b> ft <sup>2</sup> |
|---------------------------------------|------------------------------|
| U-Value of basement slab              | 0.7 Btu/hr ft² °F            |
| Floor slab perimeter (P)              | <b>395</b> ft                |
| Depth of basement slab below grade    | <b>6</b> ft                  |
| U-Value of basement wall              | 0.4 Btu/hr ft² °F            |
| Total R-value of perimeter insulation | 2.8 hr ft² °F/Btu            |
| Slab on grade                         |                              |
| Floor slab area                       | <b>2,271</b> ft <sup>2</sup> |
| U-Value of basement slab              | <b>0.7</b> Btu/hr ft² °F     |

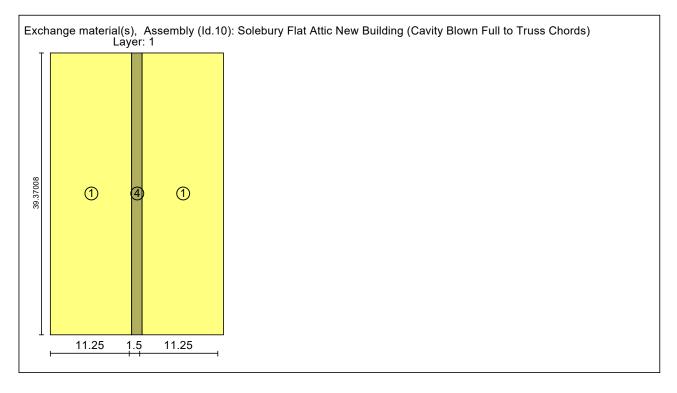
U-Value of basement slab0.7 Btu/hr ft² °FFloor slab perimeter (P)546 ftTotal R-value of perimeter insulationNaN hr ft² °F/Btu

## Above-grade walls & Rim/band joists

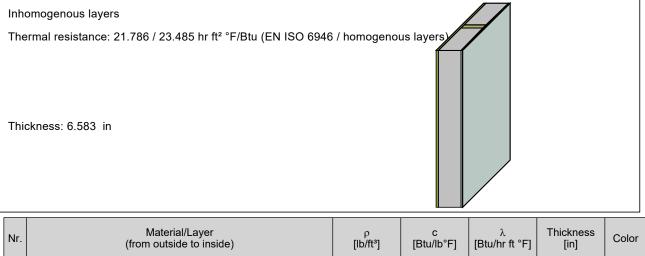
| Name                           | Orientation                                   | Area<br>[ft²] | Short wave<br>radiation<br>absorption | Assembly                                                                  |
|--------------------------------|-----------------------------------------------|---------------|---------------------------------------|---------------------------------------------------------------------------|
| Flat Attic New Building        | Horizontal (100 %)                            | 2,011.1       | 0.4                                   | Solebury Flat Attic New Building (Cavity<br>Blown Full to Truss Chords)   |
| Cathedral Ceiling2             | Horizontal (100 %)                            | 236           | 0.4                                   | Solebury Mech Loft Cathedral Ceiling<br>(Corrected Install + Air Barrier) |
| Floor over Sallyport           | Horizontal (100 %)                            | 510.7         | 0.4                                   | Solebury Floor over Sallyport (Cavity Blown Full)                         |
| Above Grade Wall New Building  | SE (29 %), SW (17 %),<br>NE (17 %), NW (37 %) | 4,249.3       | 0.4                                   | Solebury Above Grade Wall New Building                                    |
| Walkout Basement Walls         | SE (13 %), NE (53 %),<br>NW (34 %)            | 1,797.8       | 0.4                                   | Uninsulated CMU Wall                                                      |
| Above Grade Walls Old Building | SE (28 %), SW (34 %),<br>NE (36 %), NW (2 %)  | 1,577.5       | 0.4                                   | Solebury Above Grade Wall Old Building                                    |
| Attic Knee-Wall                | SW (50 %), NE (50 %)                          | 400.7         | 0.4                                   | Solebury Attic Knee-Wall (2" Rigid Foam Air Barrier Installed)            |
| Flat Attic Old Building        | Horizontal (100 %)                            | 362           | 0.4                                   | Solebury Mech Loft Cathedral Ceiling<br>(Corrected Install + Air Barrier) |
| Cathedral Ceiling1             | SE (14 %), SW (41 %),<br>NE (32 %), NW (14 %) | 2,911.1       | 0.4                                   | Solebury Mech Loft Cathedral Ceiling<br>(Corrected Install + Air Barrier) |
| Total                          |                                               | 14,056.3      |                                       |                                                                           |

#### Assembly (Id.10): Solebury Flat Attic New Building (Cavity Blown Full to Truss Chords)

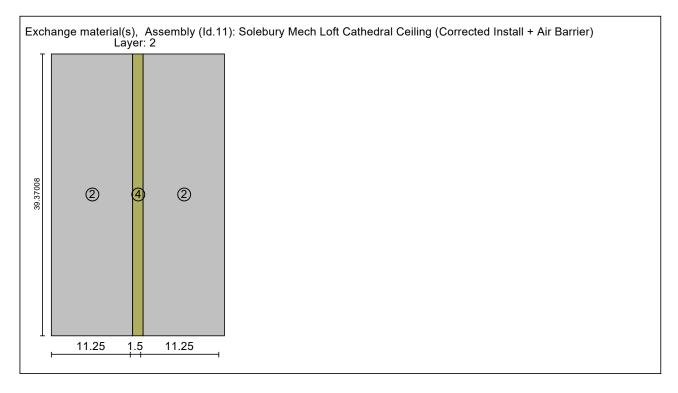
| Inh                                                                                                                   | omogenous layers                           |               |                 |                     |                   |       |  |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|--|
| Thermal resistance: 63.4 / 64.308 hr ft <sup>2</sup> °F/Btu (EN ISO 6946 / homogenous layers)<br>Thickness: 15.992 in |                                            |               |                 |                     |                   |       |  |
| Nr.                                                                                                                   | Material/Layer<br>(from outside to inside) | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |  |
| 1                                                                                                                     | Fibre Glass                                | 1.87          | 0.2             | 0.0202              | 3.5               |       |  |
| 2                                                                                                                     | Fibre Glass                                | 1.87          | 0.2             | 0.0202              | 12                |       |  |
| 3                                                                                                                     | Gypsum Board (USA)                         | 53.06         | 0.21            | 0.0942              | 0.492             |       |  |
|                                                                                                                       | Exchange materials                         |               |                 |                     |                   |       |  |


24.97

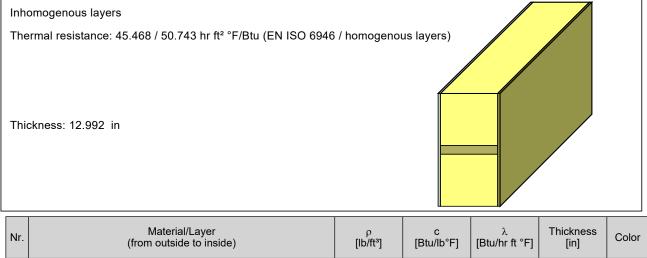
0.45


0.0497

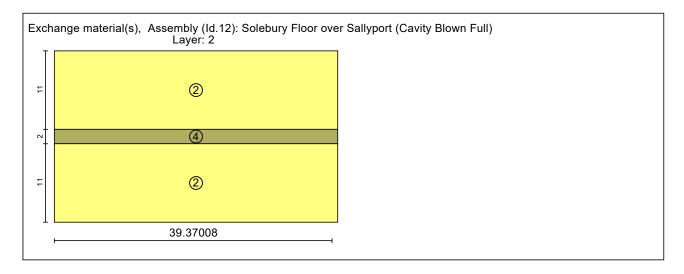
---


4 Spruce

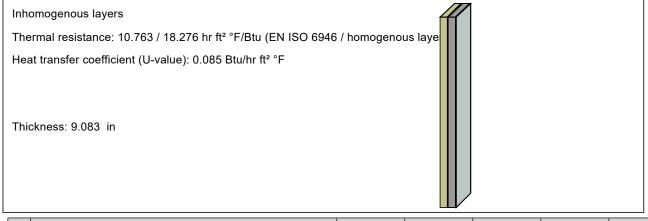



#### Assembly (Id.11): Solebury Mech Loft Cathedral Ceiling (Corrected Install + Air Barrier)

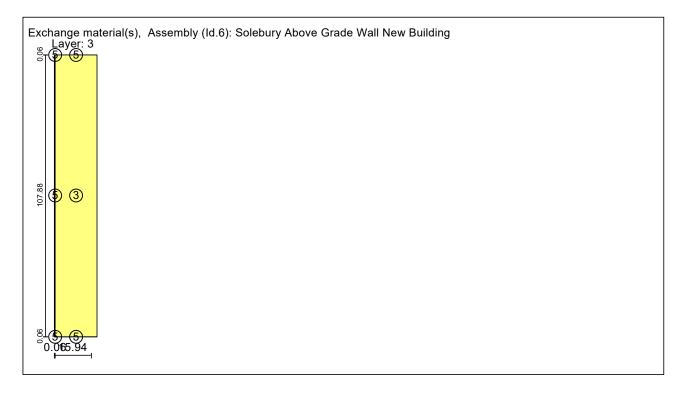



| Nr.                | (from outside to inside)   | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | ر<br>[Btu/hr ft °F] | [in]  | Color |
|--------------------|----------------------------|---------------|-----------------|---------------------|-------|-------|
| 1                  | Plywood (USA)              | 29.34         | 0.45            | 0.0485              | 0.591 |       |
| 2                  | Cellulose Fibre Insulation | 1.87          | 0.45            | 0.0208              | 5.5   |       |
| 3                  | Gypsum Board (USA)         | 53.06         | 0.21            | 0.0942              | 0.492 |       |
| Exchange materials |                            |               |                 |                     |       |       |
| 4                  | Spruce                     | 24.97         | 0.45            | 0.0497              |       |       |

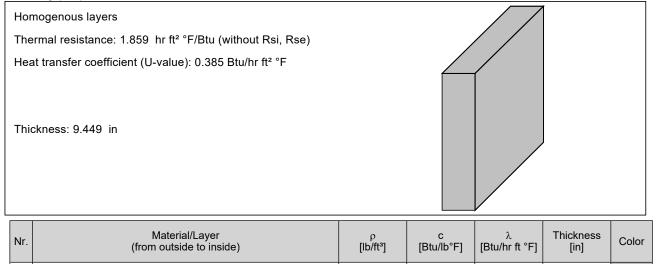



#### Assembly (Id.12): Solebury Floor over Sallyport (Cavity Blown Full)




| Nr. | (from outside to inside) | [lb/ft³] | [Btu/lb°F] | [Btu/hr ft °F] | [in]  | Color |  |
|-----|--------------------------|----------|------------|----------------|-------|-------|--|
| 1   | Gypsum Board (USA)       | 53.06    | 0.21       | 0.0942         | 0.492 |       |  |
| 2   | Fibre Glass              | 1.87     | 0.2        | 0.0202         | 12    |       |  |
| 3   | Plywood (USA)            | 29.34    | 0.45       | 0.0485         | 0.5   |       |  |
|     | Exchange materials       |          |            |                |       |       |  |
| 4   | Spruce                   | 24.97    | 0.45       | 0.0497         |       |       |  |




#### Assembly (Id.6): Solebury Above Grade Wall New Building



| Nr. | Material/Layer<br>(from outside to inside) | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |  |  |  |
|-----|--------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|--|--|--|
| 1   | Sandstone                                  | 138.84        | 0.18            | 0.973               | 4                 |       |  |  |  |
| 2   | Plywood (USA)                              | 29.34         | 0.45            | 0.0485              | 0.591             |       |  |  |  |
| 3   | Fibre Glass                                | 1.87          | 0.2             | 0.0202              | 4                 |       |  |  |  |
| 4   | Gypsum Board (USA)                         | 53.06         | 0.21            | 0.0942              | 0.492             |       |  |  |  |
|     | Exchange materials                         |               |                 |                     |                   |       |  |  |  |
| 5   | Metal Deck, unperforated                   | 486.94        | 0.11            | 26.5784             |                   |       |  |  |  |



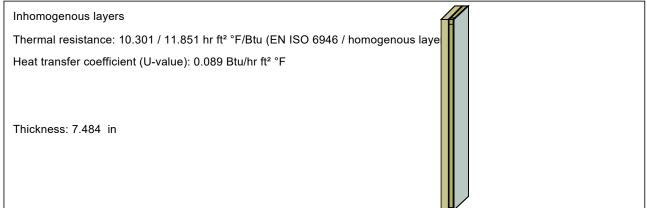
#### Assembly (Id.2): Uninsulated CMU Wall



144.52

0.19

0.4235

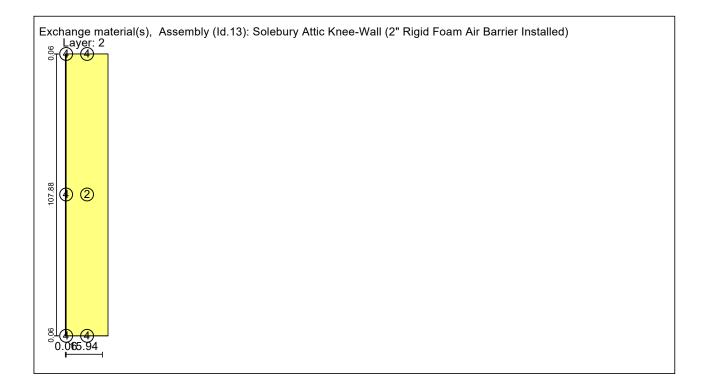

9.449

#### Assembly (Id.7): Solebury Above Grade Wall Old Building

Concrete Brick

1

74




| Nr.        | Material/Layer<br>(from outside to inside) | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |
|------------|--------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|
| 1          | Sandstone                                  | 138.84        | 0.18            | 0.973               | 4                 |       |
| 2          | Oriented Strand Board                      | 40.58         | 0.45            | 0.0532              | 0.492             |       |
| 3          | Fibre Glass                                | 1.87          | 0.2             | 0.0202              | 2.5               |       |
| 4          | Gypsum Board (USA)                         | 53.06         | 0.21            | 0.0942              | 0.492             |       |
|            | Exchange n                                 | naterials     |                 |                     |                   |       |
| 5          | Spruce                                     | 24.97         | 0.45            | 0.0497              |                   |       |
| 1.5<br>1.5 | 3 1.514.5                                  |               |                 |                     |                   |       |

#### Assembly (Id.13): Solebury Attic Knee-Wall (2" Rigid Foam Air Barrier Installed)

| Inh                                                                                                                 | Inhomogenous layers                        |               |                 |                     |                   |       |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|--|--|
| Thermal resistance: 24.684 / 34.638 hr ft <sup>2</sup> °F/Btu (EN ISO 6946 / homogenous laye<br>Thickness: 7.992 in |                                            |               |                 |                     |                   |       |  |  |
| Nr.                                                                                                                 | Material/Layer<br>(from outside to inside) | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |  |  |
| 1                                                                                                                   | Extruded Polystyrene Insulation            | 1.79          | 0.35            | 0.0144              | 2                 |       |  |  |
| 2                                                                                                                   | Fibre Glass                                | 1.87          | 0.2             | 0.0202              | 5.5               |       |  |  |
| 3                                                                                                                   | Gypsum Board (USA)                         | 53.06         | 0.21            | 0.0942              | 0.492             |       |  |  |
| 5                                                                                                                   | Exchange                                   | materials     |                 | ı                   | I                 |       |  |  |

| V | Exchange materials |                          |        |      |         |  |  |  |
|---|--------------------|--------------------------|--------|------|---------|--|--|--|
|   | 4                  | Metal Deck, unperforated | 486.94 | 0.11 | 26.5784 |  |  |  |



#### Windows and Glass Doors

|      | Name | Orientation                                  | Area<br>[ft²] | Window type                                            |
|------|------|----------------------------------------------|---------------|--------------------------------------------------------|
| Wind | ows  | SE (9 %), SW (31 %), NE (38 %), NW (22<br>%) |               | Glazing: Reflective 2, Frame: Wood/Vinyl -<br>Operable |

# Window type (Id 1): Glazing: Reflective 2, Frame: Wood/Vinyl - Operable Basic data

| Uw -mounted [Btu/hr ft <sup>2</sup> °F]         |  | 0.4 | 4614 |  |  |  |
|-------------------------------------------------|--|-----|------|--|--|--|
| Frame factor                                    |  |     | 7859 |  |  |  |
| Glass U-value [Btu/hr ft² °F]                   |  | 0.4 | 0.45 |  |  |  |
| SHGC/Solar energy transmittance (perpendicular) |  |     | 15   |  |  |  |
| Frame data                                      |  |     |      |  |  |  |
|                                                 |  |     |      |  |  |  |

| Setting                                   | Left | Right | Тор  | Bottom |
|-------------------------------------------|------|-------|------|--------|
| Frame width [in]                          | 3    | 3     | 3    | 3      |
| Frame U-value [Btu/hr ft² °F]             | .23  | .23   | .23  | .23    |
| Glazing-to-frame psi-value [Btu/hr ft °F] | .04  | .04   | .04  | .04    |
| Frame-to-Wall psi-value [Btu/hr ft °F]    | .029 | .029  | .029 | .029   |

#### Solar radiation angle dependent data

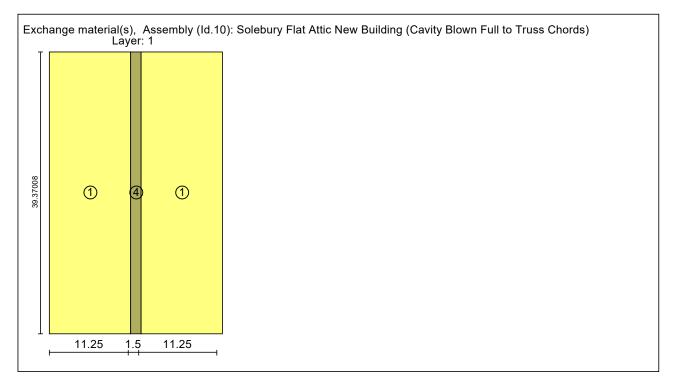
| Angle<br>[°] | Total<br>solar<br>trans. |
|--------------|--------------------------|
| 0            | 0.22                     |

#### Doors

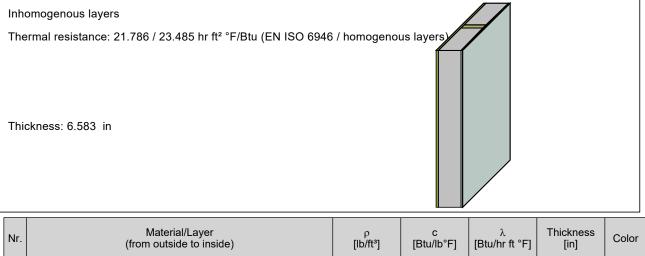
| Name | Orientation                                   | Area<br>[ft²] | Short wave<br>radiation<br>absorption | Assembly      |
|------|-----------------------------------------------|---------------|---------------------------------------|---------------|
|      | SE (40 %), SW (11 %),<br>NE (30 %), NW (19 %) | 105.1         | 0.4                                   | Exterior Door |

#### Assembly (Id.1): Exterior Door

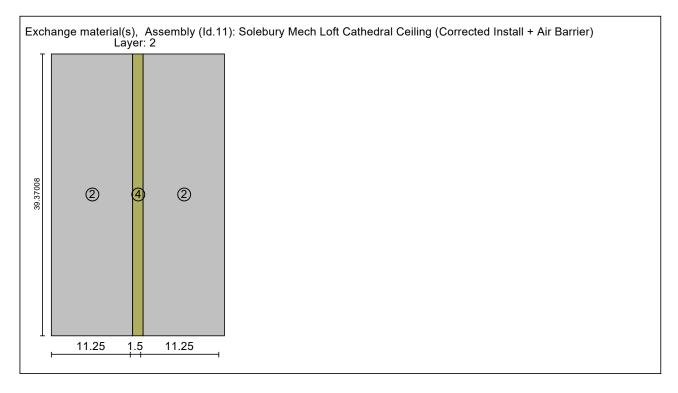
|      | nogenous layers                                         |               |                 |                     |                   |       |
|------|---------------------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|
| The  | rmal resistance: 3.333 hr ft² °F/Btu (without Rsi, Rse) |               |                 |                     |                   |       |
| Hea  | t transfer coefficient (U-value): 0.233 Btu/hr ft² °F   |               |                 |                     |                   |       |
| Thio | skness: 2.75 in                                         |               |                 |                     |                   |       |
| Nr.  | Material/Layer<br>(from outside to inside)              | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |
| 1    | Southern Yellow Pine                                    | 31.21         | 0.45            | 0.0688              | 2.75              |       |


## Ceilings

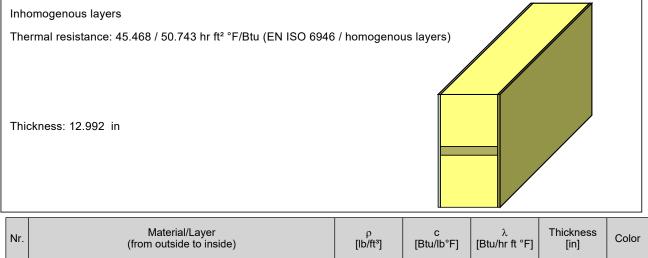
| Name                    | Area<br>[ft²] | Short wave<br>radiation<br>absorption | Assembly                                                               |
|-------------------------|---------------|---------------------------------------|------------------------------------------------------------------------|
| Flat Attic New Building | 2,011.1       | 0.4                                   | Solebury Flat Attic New Building (Cavity Blown Full to Truss Chords)   |
| Cathedral Ceiling2      | 236           | 0.4                                   | Solebury Mech Loft Cathedral Ceiling (Corrected Install + Air Barrier) |
| Floor over Sallyport    | 510.7         | 0.4                                   | Solebury Floor over Sallyport (Cavity Blown Full)                      |
| Flat Attic Old Building | 362           | 0.4                                   | Solebury Mech Loft Cathedral Ceiling (Corrected Install + Air Barrier) |
| Total                   | 3,119.8       |                                       |                                                                        |


#### Assembly (Id.10): Solebury Flat Attic New Building (Cavity Blown Full to Truss Chords)

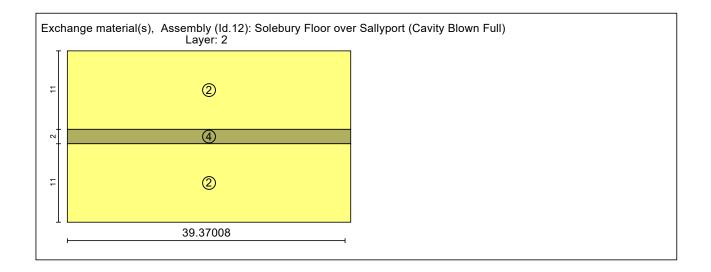
| Inh                                                                                           | Inhomogenous layers                        |               |                 |                     |                   |       |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|--|--|--|
| Thermal resistance: 63.4 / 64.308 hr ft <sup>2</sup> °F/Btu (EN ISO 6946 / homogenous layers) |                                            |               |                 |                     |                   |       |  |  |  |
| Nr.                                                                                           | Material/Layer<br>(from outside to inside) | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |  |  |  |
| 1                                                                                             | Fibre Glass                                | 1.87          | 0.2             | 0.0202              | 3.5               |       |  |  |  |
| 2                                                                                             | Fibre Glass                                | 1.87          | 0.2             | 0.0202              | 12                |       |  |  |  |
| 3                                                                                             | Gypsum Board (USA)                         | 53.06         | 0.21            | 0.0942              | 0.492             |       |  |  |  |
|                                                                                               | Exchange r                                 | naterials     |                 |                     |                   |       |  |  |  |
| 4                                                                                             | Spruce                                     | 24.97         | 0.45            | 0.0497              |                   |       |  |  |  |


77




#### Assembly (Id.11): Solebury Mech Loft Cathedral Ceiling (Corrected Install + Air Barrier)




| Nr.                | Material/Layer<br>(from outside to inside) | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |  |  |
|--------------------|--------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|--|--|
| 1                  | Plywood (USA)                              | 29.34         | 0.45            | 0.0485              | 0.591             |       |  |  |
| 2                  | Cellulose Fibre Insulation                 | 1.87          | 0.45            | 0.0208              | 5.5               |       |  |  |
| 3                  | Gypsum Board (USA)                         | 53.06         | 0.21            | 0.0942              | 0.492             |       |  |  |
| Exchange materials |                                            |               |                 |                     |                   |       |  |  |
| 4                  | Spruce                                     | 24.97         | 0.45            | 0.0497              |                   |       |  |  |



#### Assembly (Id.12): Solebury Floor over Sallyport (Cavity Blown Full)



| Nr.                | Material/Layer<br>(from outside to inside) | ρ<br>[lb/ft³] | c<br>[Btu/lb°F] | λ<br>[Btu/hr ft °F] | Thickness<br>[in] | Color |  |  |
|--------------------|--------------------------------------------|---------------|-----------------|---------------------|-------------------|-------|--|--|
| 1                  | Gypsum Board (USA)                         | 53.06         | 0.21            | 0.0942              | 0.492             |       |  |  |
| 2                  | Fibre Glass                                | 1.87          | 0.2             | 0.0202              | 12                |       |  |  |
| 3                  | Plywood (USA)                              | 29.34         | 0.45            | 0.0485              | 0.5               |       |  |  |
| Exchange materials |                                            |               |                 |                     |                   |       |  |  |
| 4                  | Spruce                                     | 24.97         | 0.45            | 0.0497              |                   |       |  |  |



#### **Space heating**

| Туре   | Performance ratio of heat<br>generator<br>[-] | Fuel type   |  |  |
|--------|-----------------------------------------------|-------------|--|--|
| Boiler | 1.07                                          | Natural Gas |  |  |

#### Space cooling

| Туре      | Distribution                        | Capacity<br>[kBtu/hr] | СОР     |
|-----------|-------------------------------------|-----------------------|---------|
| Heat pump | Recirculation air  Dehumidification | 480                   | 5   1.2 |
| Total     |                                     | 480                   |         |

#### Water heating

| Type Performance ratio of heat generator [-] |      | Fuel type   |  |  |  |
|----------------------------------------------|------|-------------|--|--|--|
| User defined                                 | 0.28 | Electricity |  |  |  |

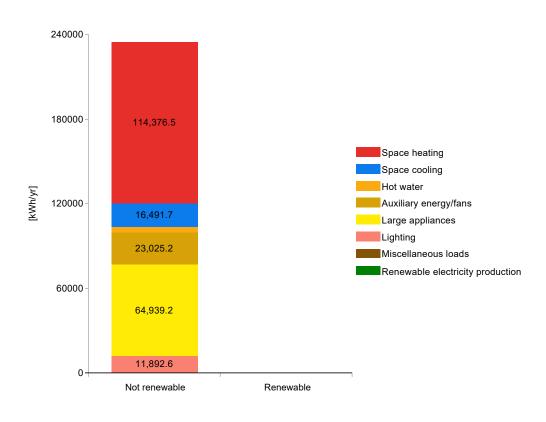
#### Water storage

| Nr | Capacity<br>[gal] |
|----|-------------------|
|----|-------------------|

#### Infiltration/Ventilation

ACH @ 50 Pascal 5.9 1/hr CFM @ 50 Pascal 10,822.5 cfm

| Nr    | Sensible recovery<br>efficiency<br>[-] | Rate<br>[cfm] | Electric<br>efficiency<br>[W/cfm] | Fan<br>[W] | Defrost | Temperature<br>below which<br>defrost must<br>be used<br>[°F] | Subsoil<br>heat exchanger<br>efficiency<br>[-] |
|-------|----------------------------------------|---------------|-----------------------------------|------------|---------|---------------------------------------------------------------|------------------------------------------------|
| 2     | 0.46                                   | 1,250.85      | 0.02                              | 700.47     | yes     | 16.48                                                         | 0                                              |
| Total | 0.36                                   | 1,250.85      |                                   | 700.47     |         |                                                               |                                                |


# Lights and appliances

| Туре                            | Energy use<br>[kWh/yr] | In conditioned space |
|---------------------------------|------------------------|----------------------|
| Boiler heating auxiliary energy | 348.01                 | no                   |
| Other                           | 0                      | no                   |
| DHW circulating pump            | 2,650.83               | yes                  |
| Heating system circulation pump | 3,336.08               | yes                  |
| Heating system circulation pump | 1,592.82               | yes                  |
| Other                           | 5,428.8                | yes                  |
| Ventilation winter              | 3,472.38               | yes                  |
| Ventilation Defrost             | 2,221.98               | yes                  |
| Ventilation summer              | 3,974.32               | yes                  |
| Total                           | 23,025.22              |                      |

# SITE ENERGY REPORT

| Project name<br>Climate<br>Type                       | Potential Improvements Package<br>WILLOW GROVE NAS PA<br>Non-residential |
|-------------------------------------------------------|--------------------------------------------------------------------------|
| Interior conditioned floor area                       | <b>13,988</b> ft <sup>2</sup>                                            |
| Number of units                                       | 1                                                                        |
| Occupants                                             | 25                                                                       |
| Site energy use                                       | <b>800,845.5</b> kBtu/yr                                                 |
| Specific site energy use                              | <b>57.3</b> kBtu/ft²yr                                                   |
| Site energy use                                       | <b>234,727.8</b> kWh/yr                                                  |
| Specific site energy use                              | <b>16.8</b> kWh/ft²yr                                                    |
| Site energy use per person                            | 9,389.1 kWh/Person yr                                                    |
| Net site energy use (with 100% renewables)            | <b>800,845.5</b> kBtu/yr                                                 |
| Specific net site energy use (with 100% renewables)   | 57.3 kBtu/ft²yr                                                          |
| Net site energy use (with 100% renewables)            | <b>234,727.8</b> kWh/yr                                                  |
| Specific net site energy use (with 100% renewables)   | 16.8 kWh/ft²yr                                                           |
| Net site energy use per person (with 100% renewables) | 9,389.1 kWh/Person yr                                                    |

#### **OVERVIEW**



WUFI®Passive V.3.3.0.2: Frank Swol/EAM Associates

82

# SITE ENERGY REPORT

#### TOTAL USE BY TYPE

| Туре                             | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr]             |
|----------------------------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|----------------------------------|
| Space heating                    | 114,376.5               | 8.2                                     | 390,230.2                | 27.9                                     |                                  |
| Space cooling                    | 16,491.7                | 1.2                                     | 56,266.4                 | 4                                        |                                  |
| Hot water                        | 4,002.6                 | 0.3                                     | 13,656.1                 | 1                                        |                                  |
| Auxiliary energy/fans            | 23,025.2                | 1.6                                     | 78,557.6                 | 5.6                                      |                                  |
| Large appliances                 | 64,939.2                | 4.6                                     | 221,560                  | 15.8                                     |                                  |
| Lighting                         | 11,892.6                | 0.9                                     | 40,575.2                 | 2.9                                      |                                  |
| Miscellaneous loads              | 0                       | 0                                       | 0                        | 0                                        |                                  |
| Renewable electricity production | 0                       | 0                                       | 0                        | 0                                        | 0 30000 60000 90000 120000       |
| Total                            | 234,727.8               | 16.8                                    | 800,845.5                | 57.3                                     | Renewable electricity production |

#### **SPACE HEATING**

| Туре   | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr]       |
|--------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|----------------------------|
| Boiler | 114,376.5               | 8.2                                     | 390,230.2                | 27.9                                     |                            |
| Total  | 114,376.5               | 8.2                                     | 390,230.2                | 27.9                                     | 0 30000 60000 90000 120000 |

#### SPACE COOLING

| Туре                  | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] |      | Site e | nergy [kW | /h/yr] |       |
|-----------------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|------|--------|-----------|--------|-------|
| Recirculation Cooling | 10,889.7                | 0.8                                     | 37,153.5                 | 2.7                                      |      |        |           |        |       |
| Dehumidification      | 5,602                   | 0.4                                     | 19,112.9                 | 1.4                                      |      |        |           |        |       |
| Total                 | 16,491.7                | 1.2                                     | 56,266.4                 | 4                                        | Ö 30 | 00     | 6000      | 9000   | 12000 |

#### DHW

| Туре         | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] |          | Site | energy [kW | 'h/yr] |      |
|--------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|----------|------|------------|--------|------|
| User defined | 4,002.6                 | 0.3                                     | 13,656.1                 | 1                                        |          |      |            |        |      |
| Total        | 4,002.6                 | 0.3                                     | 13,656.1                 | 1                                        | 0 1<br>I | 125  | 2250       | 3375   | 4500 |

## AUXILIARY ENERGY/FANS

| Туре                            | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr]  |
|---------------------------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|-----------------------|
| Boiler heating auxiliary energy | 348                     | 0                                       | 1,187.3                  | 0.1                                      |                       |
| Other                           | 0                       | 0                                       | 0                        | 0                                        |                       |
| DHW circulating pump            | 2,650.8                 | 0.2                                     | 9,044.1                  | 0.6                                      |                       |
| Heating system circulation pump | 3,336.1                 | 0.2                                     | 11,382.1                 | 0.8                                      |                       |
| Heating system circulation pump | 1,592.8                 | 0.1                                     | 5,434.4                  | 0.4                                      |                       |
| Other                           | 5,428.8                 | 0.4                                     | 18,522                   | 1.3                                      |                       |
| Ventilation winter              | 3,472.4                 | 0.2                                     | 11,847.1                 | 0.8                                      |                       |
| Ventilation Defrost             | 2,222                   | 0.2                                     | 7,581                    | 0.5                                      |                       |
| Ventilation summer              | 3,974.3                 | 0.3                                     | 13,559.6                 | 1                                        |                       |
| Total                           | 23,025.2                | 1.6                                     | 78,557.6                 | 5.6                                      | 0 1500 3000 4500 6000 |

# SITE ENERGY REPORT

#### LARGE APPLIANCES

| Туре         | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] |     | Site | energy [kW | /h/yr] |       |
|--------------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|-----|------|------------|--------|-------|
| Refrigerator | 1,197.2                 | 0.1                                     | 4,084.6                  | 0.3                                      |     |      |            |        |       |
| PC           | 6,150                   | 0.4                                     | 20,982.6                 | 1.5                                      |     |      |            |        |       |
| Monitor      | 1,575                   | 0.1                                     | 5,373.6                  | 0.4                                      |     |      |            |        |       |
| Printer      | 7,650                   | 0.5                                     | 26,100.3                 | 1.9                                      |     |      |            |        |       |
| Server       | 19,272                  | 1.4                                     | 65,752.3                 | 4.7                                      |     |      |            |        |       |
| User defined | 29,095                  | 2.1                                     | 99,266.6                 | 7.1                                      |     |      |            |        |       |
| Total        | 64,939.2                | 4.6                                     | 221,560                  | 15.8                                     | 0 8 | 000  | 16000      | 24000  | 32000 |

#### LIGHTING

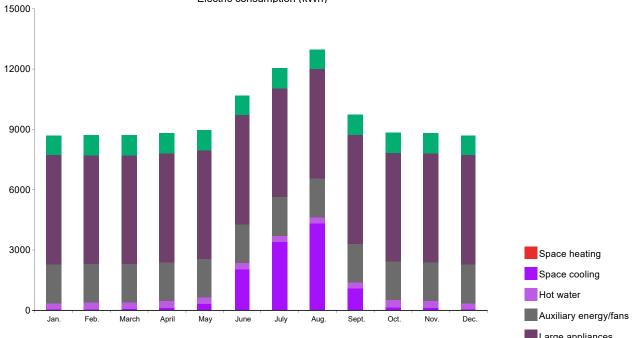
| Туре     | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] | Site energy [kWh/yr]  |
|----------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|-----------------------|
| Lighting | 1,963.9                 | 0.1                                     | 6,700.5                  | 0.5                                      |                       |
| Lighting | 3,382.3                 | 0.2                                     | 11,539.7                 | 0.8                                      |                       |
| Lighting | 4,146                   | 0.3                                     | 14,145.5                 | 1                                        |                       |
| Lighting | 2,400.3                 | 0.2                                     | 8,189.5                  | 0.6                                      |                       |
| Total    | 11,892.6                | 0.9                                     | 40,575.2                 | 2.9                                      | 0 1125 2250 3375 4500 |

#### **MISC LOADS**

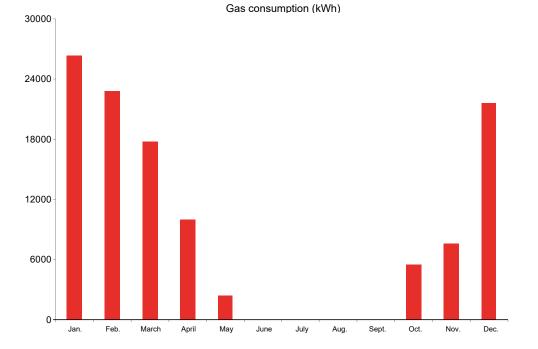
| Туре  | Site Energy<br>[kWh/yr] | Specific site<br>energy<br>[kWh/ft² yr] | Site Energy<br>[kBtu/yr] | Specific Site<br>Energy<br>[kBtu/ft² yr] |
|-------|-------------------------|-----------------------------------------|--------------------------|------------------------------------------|
| Total | 0                       | 0                                       | 0                        | 0                                        |

# SITE ENERGY MONTHLY REPORT

## SITE ENERGY MONTHLY REPORT


#### ELECTRICITY USE [kWh]

| Туре                             | Jan.         | Feb.         | March        | April        | May          | June         | July         | Aug.         | Sept.        | Oct.         | Nov.         | Dec.         |
|----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Space heating                    | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| Space cooling                    | 54.66        | 61.37        | 89.35        | 150.76       | 323.81       | 2,053        | 3,395.8<br>1 | 4,333.7<br>7 | 1,076.1<br>2 | 188.62       | 143.59       | 55.82        |
| Hot water                        | 333.55       | 333.55       | 333.55       | 333.55       | 333.55       | 333.55       | 333.55       | 333.55       | 333.55       | 333.55       | 333.55       | 333.55       |
| Auxiliary energy/fans            | 1,918.7<br>7 |
| Large appliances                 | 5,411.6      | 5,411.6      | 5,411.6      | 5,411.6      | 5,411.6      | 5,411.6      | 5,411.6      | 5,411.6      | 5,411.6      | 5,411.6      | 5,411.6      | 5,411.6      |
| Lighting                         | 991.05       | 991.05       | 991.05       | 991.05       | 991.05       | 991.05       | 991.05       | 991.05       | 991.05       | 991.05       | 991.05       | 991.05       |
| Miscellaneous loads              | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| Renewable electricity production | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |


#### GAS USE [kWh]

| Туре                             | Jan.          | Feb.          | March         | April         | May          | June | July | Aug. | Sept. | Oct.         | Nov.         | Dec.          |
|----------------------------------|---------------|---------------|---------------|---------------|--------------|------|------|------|-------|--------------|--------------|---------------|
| Space heating                    | 26,344.<br>46 | 22,844.<br>54 | 17,781.<br>77 | 10,055.<br>82 | 2,432.0<br>9 | 0    | 0    | 0    | 0     | 5,580.6<br>3 | 7,636.7<br>5 | 21,624.<br>59 |
| Space cooling                    | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0            | 0             |
| Hot water                        | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0            | 0             |
| Auxiliary energy/fans            | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0            | 0             |
| Large appliances                 | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0            | 0             |
| Lighting                         | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0            | 0             |
| Miscellaneous loads              | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0            | 0             |
| Renewable electricity production | 0             | 0             | 0             | 0             | 0            | 0    | 0    | 0    | 0     | 0            | 0            | 0             |

# SITE ENERGY MONTHLY REPORT



Electric consumption (kWh)



Space cooling
Hot water
Auxiliary energy/fans
Large appliances
Lighting
Miscellaneous loads
Renewable electricity production

86

# **Projected Energy Savings Tables**



# **kBTU WHOLE PROJECT ANNUAL SAVINGS**

| Unit Type               | Annual Saved<br>(kBtu/sf/yr) | Building<br>Floor Area | Annual Saved<br>(kBtu) |                                 |
|-------------------------|------------------------------|------------------------|------------------------|---------------------------------|
| Administration Building | 27.4                         | 13,988                 | 383,271                |                                 |
|                         |                              |                        |                        | Total Lifetime*<br>Saved (kBtu) |
|                         |                              |                        |                        | 7,013,859                       |

\*See Expected Useful Lifetime Table on Page 90 for the modeled lifetime (in years) for each measure that was used to generate the total lifetime saved figured above.

# **kBTU PER UNIT SAVINGS**

|                         |          | Existing                                      | Prop                                          |                            |                           |
|-------------------------|----------|-----------------------------------------------|-----------------------------------------------|----------------------------|---------------------------|
| Unit Type               | Quantity | Annual End-Use<br>Consumption<br>(kBtu/sf/yr) | Annual End-Use<br>Consumption<br>(kBtu/sf/yr) | Difference<br>(kBtu/sf/yr) | Percentage<br>Improvement |
| Administration Building | 1        | 84.7                                          | 57.3                                          | 27.4                       | 32.35%                    |

# **EXPECTED USEFUL LIFETIME TABLE**

|   | Measure Name         | Years of Useful Life |
|---|----------------------|----------------------|
| 1 | Envelope Air Sealing | 15                   |
| 2 | Appliances           | 12                   |
| 4 | Domestic Hot Water   | 13                   |
| 5 | Exhaust Fans         | 19                   |
| 6 | HVAC                 | 18                   |
| 7 | Insulation           | 25                   |
| 8 | Lighting             | 20                   |
| 9 | Fenestration         | 25                   |

# **United States Energy Information Administration**

## **Commercial Buildings Energy Consumption Survey (CBECS)**

*6,436 Buildings sampled to represent 5.9 million buildings across the US* **Release date: December 2022** 

#### Table E2. Major fuels consumption intensities by end use

#### Major fuels energy intensity<sup>a</sup>

|                                   | Total | Space<br>heating | Cooling | Venti-<br>lation | Water<br>heating | Lighting | Refrig-<br>eration | Office<br>equip-<br>ment | Com-<br>puting | Other |
|-----------------------------------|-------|------------------|---------|------------------|------------------|----------|--------------------|--------------------------|----------------|-------|
| Building floorspace (square feet) |       |                  |         |                  |                  |          |                    |                          |                |       |
| 10,001 to 25,000                  | 59.5  | 23.6             | 6.2     | 5.0              | 2.8              | 6.1      | 4.2                | 0.6                      | 3.1            | 10.4  |
| Principal building activity       |       |                  |         |                  |                  |          |                    |                          |                |       |
| Office                            | 65.6  | 20.1             | 5.1     | 12.9             | 1.0              | 7.8      | 1.6                | 0.8                      | 5.2            | 11.4  |
| Public assembly                   | 81.1  | 41.4             | 15.8    | 4.0              | 0.8              | 5.1      | 3.0                | 0.4                      | 1.0            | 12.3  |
| Public order and safety           | 86.3  | 30.2             | 9.2     | 6.1              | 10.7             | 11.5     | 2.0                | 0.6                      | 2.7            | 11.7  |
| Year constructed                  |       |                  |         |                  |                  |          |                    |                          |                |       |
| 1990 to 1999                      | 63.6  | 21.6             | 6.8     | 7.9              | 3.3              | 7.4      | 4.4                | 0.5                      | 2.1            | 10.4  |
| 2000 to 2009                      | 80.7  | 25.9             | 8.0     | 8.9              | 4.0              | 8.4      | 5.7                | 0.5                      | 3.5            | 13.5  |
| Census region and division        |       |                  |         |                  |                  |          |                    |                          |                |       |

## Major fuels energy intensity<sup>a</sup>

|                                                       | Total | Space<br>heating | Cooling | Venti-<br>lation | Water<br>heating | Lighting | Refrig-<br>eration | Office<br>equip-<br>ment | Com-<br>puting | Other |
|-------------------------------------------------------|-------|------------------|---------|------------------|------------------|----------|--------------------|--------------------------|----------------|-------|
| Northeast                                             | 77.5  | 32.8             | 4.4     | 8.4              | 3.7              | 8.1      | 3.8                | 0.5                      | 3.5            | 11.8  |
| New England                                           | 74.1  | 33.7             | 3.2     | 7.9              | 4.2              | 7.3      | 5.4                | 0.5                      | 2.1            | 12.7  |
| Middle Atlantic                                       | 78.6  | 32.6             | 4.7     | 8.6              | 3.6              | 8.3      | 3.3                | 0.5                      | 3.9            | 11.6  |
| Climate zone <sup>b</sup>                             |       |                  |         |                  |                  |          |                    |                          |                |       |
| Mixed mild                                            | 77.3  | 29.3             | 6.2     | 8.7              | 4.1              | 7.9      | 3.9                | 0.5                      | 3.5            | 11.8  |
| Number of floors                                      |       |                  |         |                  |                  |          |                    |                          |                |       |
| 2                                                     | 62.1  | 23.1             | 6.1     | 6.3              | 3.3              | 7.1      | 3.8                | 0.5                      | 2.1            | 9.4   |
| 3                                                     | 71.5  | 27.0             | 6.5     | 7.9              | 3.5              | 7.3      | 3.5                | 0.5                      | 3.4            | 11.2  |
| Elevators and escalators<br>(more than one may apply) |       |                  |         |                  |                  |          |                    |                          |                |       |
| 1 elevator                                            | 65.5  | 26.3             | 6.1     | 7.1              | 3.0              | 6.6      | 2.8                | 0.5                      | 2.6            | 9.9   |
| Weekly operating hours                                |       |                  |         |                  |                  |          |                    |                          |                |       |
| 61 to 84                                              | 80.9  | 28.8             | 7.0     | 7.9              | 3.6              | 9.3      | 5.7                | 0.6                      | 2.5            | 11.8  |
| Ownership and occupancy                               |       |                  |         |                  |                  |          |                    |                          |                |       |
| Government owned                                      | 72.5  | 29.5             | 8.4     | 6.7              | 3.5              | 6.4      | 2.9                | 0.5                      | 3.0            | 11.8  |
| Local                                                 | 64.8  | 27.5             | 7.9     | 5.5              | 2.9              | 5.9      | 2.7                | 0.5                      | 2.9            | 9.5   |
| Party responsible for operation<br>of energy systems  |       |                  |         |                  |                  |          |                    |                          |                |       |
| Building owner                                        | 71.2  | 25.5             | 7.0     | 8.1              | 3.8              | 7.2      | 4.4                | 0.5                      | 3.1            | 11.6  |
| Property management                                   | 73.9  | 17.2             | 7.3     | 10.1             | 5.8              | 9.0      | 5.6                | 0.7                      | 2.9            | 12.1  |
| Predominant exterior wall material                    |       |                  |         |                  |                  |          |                    |                          |                |       |
| Brick, stone, or stucco                               | 78.6  | 26.7             | 7.6     | 8.6              | 4.7              | 7.4      | 4.6                | 0.6                      | 3.0            | 11.5  |
| Predominant roof material                             |       |                  |         |                  |                  |          |                    |                          |                |       |
| Slate or tile shingles                                | 68.4  | 21.6             | 7.8     | 6.4              | 5.2              | 6.2      | 5.1                | 0.6                      | 1.8            | 10.2  |
|                                                       |       |                  |         |                  |                  |          |                    |                          |                |       |

## Major fuels energy intensity<sup>a</sup>

| Total | Space<br>heating                                                                             | Cooling                                                                                                              | Venti-<br>lation                                                                                                                                                                        | Water<br>heating                                                                                                                                                                                                    | Lighting                                                                                                                                                                                                                                                          | Refrig-<br>eration                                                                                                                                                                                                                                                                                               | Office<br>equip-<br>ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Com-<br>puting                                                                                                                                                                                                                                                                                                                                                                                                                         | Othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 57.9  | 22.9                                                                                         | 6.3                                                                                                                  | 5.2                                                                                                                                                                                     | 3.7                                                                                                                                                                                                                 | 5.6                                                                                                                                                                                                                                                               | 4.5                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 78.9  | 29.5                                                                                         | 5.8                                                                                                                  | 9.2                                                                                                                                                                                     | 4.3                                                                                                                                                                                                                 | 7.5                                                                                                                                                                                                                                                               | 3.9                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80.1  | 27.8                                                                                         | 6.7                                                                                                                  | 9.8                                                                                                                                                                                     | 4.3                                                                                                                                                                                                                 | 7.7                                                                                                                                                                                                                                                               | 4.1                                                                                                                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80.5  | 27.8                                                                                         | 6.4                                                                                                                  | 10.0                                                                                                                                                                                    | 4.2                                                                                                                                                                                                                 | 7.8                                                                                                                                                                                                                                                               | 4.4                                                                                                                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 85.6  | 29.5                                                                                         | 6.9                                                                                                                  | 10.3                                                                                                                                                                                    | 4.4                                                                                                                                                                                                                 | 7.8                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 83.7  | 29.2                                                                                         | 6.8                                                                                                                  | 10.5                                                                                                                                                                                    | 4.6                                                                                                                                                                                                                 | 7.6                                                                                                                                                                                                                                                               | 3.9                                                                                                                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 83.1  | 29.6                                                                                         | 6.6                                                                                                                  | 10.1                                                                                                                                                                                    | 4.2                                                                                                                                                                                                                 | 7.7                                                                                                                                                                                                                                                               | 3.7                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 71.6  | 25.0                                                                                         | 7.0                                                                                                                  | 8.0                                                                                                                                                                                     | 4.0                                                                                                                                                                                                                 | 7.5                                                                                                                                                                                                                                                               | 4.8                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80.4  | 28.2                                                                                         | 6.4                                                                                                                  | 8.5                                                                                                                                                                                     | 4.5                                                                                                                                                                                                                 | 7.9                                                                                                                                                                                                                                                               | 4.8                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 78.4  | 29.6                                                                                         | 6.1                                                                                                                  | 8.2                                                                                                                                                                                     | 3.8                                                                                                                                                                                                                 | 7.9                                                                                                                                                                                                                                                               | 4.7                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 77.8  | 31.9                                                                                         | 6.0                                                                                                                  | 8.0                                                                                                                                                                                     | 3.1                                                                                                                                                                                                                 | 7.7                                                                                                                                                                                                                                                               | 4.4                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 73.4  | 24.3                                                                                         | 6.9                                                                                                                  | 8.2                                                                                                                                                                                     | 4.0                                                                                                                                                                                                                 | 7.9                                                                                                                                                                                                                                                               | 4.9                                                                                                                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                              |                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 85.4  | 29.3                                                                                         | 6.9                                                                                                                  | 9.0                                                                                                                                                                                     | 5.5                                                                                                                                                                                                                 | 8.1                                                                                                                                                                                                                                                               | 5.5                                                                                                                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.(                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 57.9<br>78.9<br>80.1<br>80.5<br>85.6<br>83.7<br>83.1<br>71.6<br>80.4<br>72.4<br>78.4<br>78.4 | Totalheating57.922.978.929.580.127.880.527.885.629.583.729.283.129.671.625.080.428.272.417.378.429.677.831.973.424.3 | TotalheatingCooling57.922.96.378.929.55.880.127.86.780.527.86.485.629.56.983.729.26.883.129.66.671.625.07.080.428.26.471.625.07.071.625.06.171.77.37.378.429.66.177.831.96.073.424.36.9 | TotalheatingCoolinglation57.922.96.35.278.929.55.89.280.127.86.79.880.527.86.410.085.629.56.910.383.729.26.810.583.129.66.610.171.625.07.08.080.428.26.48.572.417.37.38.278.429.66.18.277.831.96.08.073.424.36.98.2 | TotalheatingCoolinglationheating57.922.96.35.23.778.929.55.89.24.380.127.86.79.84.380.527.86.410.04.285.629.56.910.34.483.729.26.810.54.683.129.66.610.14.271.625.07.08.04.080.428.26.48.54.572.417.37.38.25.078.429.66.18.23.877.831.96.08.03.173.424.36.98.24.0 | TotalheatingCoolinglationheatingLighting57.922.96.35.23.75.678.929.55.89.24.37.580.127.86.79.84.37.780.527.86.410.04.27.885.629.56.910.34.47.883.729.26.810.54.67.683.129.66.610.14.27.771.625.07.08.04.07.580.428.26.48.54.57.972.417.37.38.25.08.378.429.66.18.03.17.777.831.96.08.03.17.773.424.36.98.24.07.9 | TotalheatingCoolinglationheatingLightingeration $57.9$ $22.9$ $6.3$ $5.2$ $3.7$ $5.6$ $4.5$ $78.9$ $29.5$ $5.8$ $9.2$ $4.3$ $7.5$ $3.9$ $80.1$ $27.8$ $6.7$ $9.8$ $4.3$ $7.7$ $4.1$ $80.5$ $27.8$ $6.4$ $10.0$ $4.2$ $7.8$ $4.4$ $85.6$ $29.5$ $6.9$ $10.3$ $4.4$ $7.8$ $4.2$ $83.7$ $29.2$ $6.8$ $10.5$ $4.6$ $7.6$ $3.9$ $83.1$ $29.6$ $6.6$ $10.1$ $4.2$ $7.7$ $3.7$ $71.6$ $25.0$ $7.0$ $8.0$ $4.0$ $7.5$ $4.8$ $80.4$ $28.2$ $6.4$ $8.5$ $4.5$ $7.9$ $4.8$ $72.4$ $17.3$ $7.3$ $8.2$ $5.0$ $8.3$ $5.4$ $78.4$ $29.6$ $6.1$ $8.2$ $3.8$ $7.9$ $4.7$ $77.8$ $31.9$ $6.0$ $8.0$ $3.1$ $7.7$ $4.4$ $73.4$ $24.3$ $6.9$ $8.2$ $4.0$ $7.9$ $4.9$ | Space<br>heatingVenti-<br>lationWater<br>heatingRefrig-<br>capinedequip-<br>ment57.922.96.35.23.75.64.50.578.929.55.89.24.37.53.90.580.127.86.79.84.37.74.10.680.527.86.410.04.27.84.40.680.529.56.910.34.47.84.20.683.729.26.810.14.27.73.70.583.129.66.610.14.27.73.70.571.625.07.08.04.07.54.80.580.428.26.48.54.57.94.80.572.417.37.38.25.08.35.40.678.429.66.18.23.87.94.70.577.831.96.08.03.17.74.40.573.424.36.98.24.07.94.90.6 | Space<br>TotalCoolingVenti-<br>lationWater<br>heatingRefrig.<br>caritonequip-<br>mentCom-<br>puting57.922.96.35.23.75.64.50.51.378.929.55.89.24.37.53.90.52.980.127.86.79.84.37.74.10.63.680.527.86.410.04.27.84.40.63.885.629.56.910.34.47.84.20.64.283.729.26.810.54.67.63.90.63.783.129.66.610.14.27.73.70.53.671.625.07.08.04.07.54.80.52.972.417.37.38.25.08.35.40.63.378.429.66.18.23.87.94.70.52.677.831.96.08.03.17.74.40.52.373.424.36.98.24.07.94.90.63.3 |

## Major fuels energy intensity<sup>a</sup>

|                                                | Total | Space<br>heating | Cooling | Venti-<br>lation | Water<br>heating | Lighting | Refrig-<br>eration | Office<br>equip-<br>ment | Com-<br>puting | Other |
|------------------------------------------------|-------|------------------|---------|------------------|------------------|----------|--------------------|--------------------------|----------------|-------|
| Energy end uses                                |       |                  |         |                  |                  |          |                    |                          |                |       |
| (more than one may apply)                      |       |                  |         |                  |                  |          |                    |                          |                |       |
| Buildings with space heating                   | 74.1  | 25.0             | 6.7     | 8.1              | 4.0              | 7.7      | 4.7                | 0.5                      | 2.9            | 11.4  |
| Buildings with cooling                         | 74.5  | 24.8             | 7.0     | 8.3              | 4.1              | 7.9      | 4.9                | 0.6                      | 3.2            | 10.9  |
| Buildings with water heating                   | 75.1  | 25.5             | 6.9     | 8.2              | 4.0              | 7.7      | 4.8                | 0.6                      | 3.2            | 11.5  |
| Buildings with lighting                        | 72.0  | 25.0             | 6.9     | 8.0              | 4.0              | 7.5      | 4.8                | 0.5                      | 3.1            | 11.4  |
| Percentage of floorspace heated                |       |                  |         |                  |                  |          |                    |                          |                |       |
| 100%                                           | 78.3  | 28.2             | 7.0     | 8.2              | 4.1              | 7.8      | 4.2                | 0.6                      | 3.1            | 12.0  |
| Percentage of floorspace cooled                |       |                  |         |                  |                  |          |                    |                          |                |       |
| 100%                                           | 83.3  | 25.1             | 8.8     | 9.6              | 4.9              | 8.6      | 5.3                | 0.7                      | 3.7            | 12.5  |
| Percentage lit when open                       |       |                  |         |                  |                  |          |                    |                          |                |       |
| 51% to 99%                                     | 80.2  | 26.4             | 6.8     | 9.1              | 4.6              | 8.0      | 5.0                | 0.6                      | 3.3            | 12.3  |
| Percentage lit during off hours                |       |                  |         |                  |                  |          |                    |                          |                |       |
| 1% to 50%                                      | 72.3  | 25.2             | 6.8     | 8.1              | 3.6              | 7.5      | 4.5                | 0.6                      | 2.9            | 11.0  |
| Heating equipment<br>(more than one may apply) |       |                  |         |                  |                  |          |                    |                          |                |       |
| Boilers                                        | 84.9  | 32.0             | 6.7     | 9.5              | 4.4              | 7.6      | 3.3                | 0.5                      | 3.1            | 12.8  |
| Cooling equipment<br>(more than one may apply) |       |                  |         |                  |                  |          |                    |                          |                |       |
| Central chillers                               | 93.6  | 30.4             | 9.0     | 12.8             | 4.2              | 8.3      | 3.1                | 0.6                      | 6.0            | 14.0  |
| HVAC features<br>(more than one may apply)     |       |                  |         |                  |                  |          |                    |                          |                |       |
| Economizer cycle                               | 88.5  | 29.5             | 6.9     | 11.0             | 4.6              | 8.1      | 4.5                | 0.6                      | 4.8            | 13.5  |
|                                                |       |                  |         |                  |                  |          |                    |                          |                |       |

## Major fuels energy intensity<sup>a</sup>

|                                                                 | Total | Space<br>heating | Cooling | Venti-<br>lation | Water<br>heating | Lighting | Refrig-<br>eration | Office<br>equip-<br>ment | Com-<br>puting | Other |
|-----------------------------------------------------------------|-------|------------------|---------|------------------|------------------|----------|--------------------|--------------------------|----------------|-------|
| Variable air volume (VAV) system                                | 86.1  | 29.0             | 7.8     | 10.5             | 4.0              | 7.9      | 3.3                | 0.6                      | 4.7            | 14.7  |
| Dedicated outside air system (DOAS)                             | 97.7  | 29.5             | 7.3     | 11.3             | 5.7              | 8.0      | 6.0                | 0.7                      | 4.1            | 18.0  |
| Demand controlled ventilation (DCV)                             | 81.2  | 30.2             | 7.0     | 8.4              | 3.3              | 8.0      | 3.8                | 0.5                      | 5.6            | 11.7  |
| Building automation system (BAS)                                |       |                  |         |                  |                  |          |                    |                          |                |       |
| controls heating or cooling                                     | 88.4  | 28.0             | 7.6     | 10.8             | 4.4              | 8.2      | 4.4                | 0.6                      | 5.0            | 14.8  |
| Main equipment replaced since<br>2000 (more than one may apply) |       |                  |         |                  |                  |          |                    |                          |                |       |
| Heating                                                         | 67.5  | 23.6             | 6.1     | 7.4              | 3.8              | 7.4      | 4.4                | 0.6                      | 2.4            | 9.3   |
| Cooling                                                         | 71.0  | 27.7             | 6.6     | 7.9              | 4.4              | 7.1      | 3.5                | 0.5                      | 3.1            | 9.0   |
| Water-heating equipment                                         |       |                  |         |                  |                  |          |                    |                          |                |       |
| Centralized system                                              | 74.5  | 26.4             | 6.8     | 7.8              | 4.0              | 7.3      | 4.9                | 0.5                      | 2.9            | 11.4  |
| Lighting equipment types<br>(more than one may apply)           |       |                  |         |                  |                  |          |                    |                          |                |       |
| Standard fluorescent                                            | 73.0  | 25.5             | 6.9     | 8.2              | 4.1              | 7.5      | 4.5                | 0.6                      | 3.3            | 11.3  |
| Office equipment<br>(more than one may apply)                   |       |                  |         |                  |                  |          |                    |                          |                |       |
| Desktop computers                                               | 75.4  | 25.4             | 6.8     | 8.4              | 4.0              | 7.9      | 4.7                | 0.6                      | 3.1            | 11.6  |
| Separate computer areas<br>(more than one may apply)            |       |                  |         |                  |                  |          |                    |                          |                |       |
| Server closet                                                   | 77.5  | 25.8             | 6.5     | 9.3              | 4.2              | 8.3      | 4.2                | 0.6                      | 3.1            | 11.7  |
| Electric vehicle (EV) charging                                  |       |                  |         |                  |                  |          |                    |                          |                |       |
| Charging stations associated with the building                  | 72.3  | 21.2             | 5.8     | 10.0             | 3.9              | 7.9      | 3.9                | 0.5                      | 3.7            | 11.4  |
| AVERAGES OF ALL                                                 |       |                  |         |                  |                  |          |                    |                          |                |       |
| COLUMNS                                                         | 76.5  | 27.1             | 6.9     | 8.5              | 4.1              | 7.7      | 4.3                | 0.6                      | 4.4            | 12.9  |

#### Major fuels energy intensity<sup>a</sup>

(thousand Btu/square foot in buildings using any major fuel for the end use)

|       |         |         |        |         |          |         | Office |        |       |
|-------|---------|---------|--------|---------|----------|---------|--------|--------|-------|
|       | Space   |         | Venti- | Water   |          | Refrig- | equip- | Com-   |       |
| Total | heating | Cooling | lation | heating | Lighting | eration | ment   | puting | Other |

Data source: U.S. Energy Information Administration, Forms EIA-871A, C, D, E, and F of the 2018 Commercial Buildings Energy Consumption Survey Notes: Because of rounding, data may not sum to totals. The Guide to the 2018 CBECS Tables and CBECS Terminology contain definitions of terms used in these tables and comparisons between previous CBECS tables. You can access both references from http://www.eia.gov/consumption/commercial/data/2018/. Estimates for types of equipment represent consumption in buildings that have the equipment, not the consumption by the specific piece of equipment. HVAC = Heating, ventilation, and air conditioning.

<sup>a</sup> The major fuels intensity calculation is conditional on the presence of the end use, and therefore the intensities for each end use will not sum to the total intensity. In this table, each column is calculated as the sum of electricity, natural gas, fuel oil and district heat use for the end use divided by the floorspace in buildings that use any of those sources for the particular end use. The *total* column only includes the floorspace of buildings that use at least one of the major fuels and differs from the gross energy intensity in Table C4 which includes the floorspace for all buildings, regardless of whether the building uses energy.

<sup>b</sup>Climate zones are based on ASHRAE Standard 169-2021; see https://www.eia.gov/consumption/commercial/maps.php#defined.

<sup>c</sup>Other sources includes wood, coal, solar, and all other energy sources.

<sup>d</sup>*Office devices* refers to any combination of printers, copiers, scanners, or FAX machines.

Q = Data withheld either because the relative standard error was greater than 50% or the reporting sample had fewer than 20 buildings.

N = No buildings in reporting sample.



# Findings & Recommendations:

## Items are not listed in order of priority or payback potential

In general the building specifications, conditions, and operations were found to be fair when reviewed against the energy model, aggregated data from a mass peer group of buildings, and EAM's long experience in examining building energy use and performance for its occupants. However we would conclude that there is certainly room for meaningful improvements in all these areas. Things to be done which should not only lower energy use, but also help remedy some of the building comfort issues that were voiced during the audit, and which prompted it in the first place.

As detailed in the energy saving calculations of the report the building is using approximately 10% more energy in total that its refined peer group of buildings from the most recent EIA CBECs data. That energy intensity data chart included in this report was refined by EAM, removing many dozens of line items which reflected sampled buildings with dissimilar characteristics from the Solebury Township building. The remaining line items which were averaged together form energy use intensities for all major end uses which come form the actual utility of many hundreds of like buildings.

In particular the building is using ~39% more space heating energy than expected by the peer group data and the energy modeling. Cooling demand even farther above the expected levels, at roughly 3 times the average intensity of the peer CBECs group.

The proposals below project a total savings potential of over 30% against the existing utility bills, and ~25% savings against the average usage figures from the CBECs peer group. Perhaps just as important they are designed to help remedy the comfort issues expressed by building occupants.

## 1. Envelope Air Sealing

#### Existing Conditions (also see Diagnostic Testing table)

Blower door shell leakage testing found a whole building air infiltration rate 0.68 cfm50/sqft of building shell area. This represents a fairly well sealed building envelope. The current ASHRAE 90.1 energy codes would require a target of ~0.40 cfm75/sqft of building shell area. While a reduction to that level, which would represent a 40% lowering is likely unattainable for a building of this age and construction, envelope air sealing then represents a large opportunity for efficiency and comfort improvement at the project. Accordingly we have modeled a 25% reduction in our proposed model.

IR camera inspection was used in conjunction with the blower door to identify specific areas of leakage to inform the work scope. The project scope would likely not include a full gut-rehab down to the studs, so the below air sealing scope of work takes into account the level of access the contractor will have for remediation.

Air leaks through building walls via two primary modes:

- Bypasses, or large holes in the home's air barrier
- Seams between building materials

#### Materials for Air Sealing

Materials used to seal air leakage sites must be as close to impermeable to air movement as possible and must form a continuous, nonporous surface over the opening being sealed.

Use caulk or spray foam sealant to seal cracks or holes smaller than a pencil width in the ceiling, floor, or exterior walls. Seal holes on the inside and outside surfaces of walls. Silicone or acrylic latex caulk works best for gaps of 1/4" to 3/8" or less. Expanding spray foam sealant is best for filling larger gaps up to ~3", care must be taken however to use low expanding foam around fenestration openings.

For larger openings, use spray foam sealant with backing material and caulk the surface (fibrous insulation is not an air sealing material).

For very large openings use sheet materials, such as insulation board or plywood, to cover large holes. Seal the edges of the sheet materials with caulk or spray foam sealant. Seal openings between the attic and house.

## Solebury Air Sealing Scope of Work

Review IR photos. These were done in conjunction with blower door to show air leakage points. Look for areas of streaking that are either darker or lighter than the surrounding assembly.

- The major air leakage pathway that needs to be corrected, and which is also the likely cause of comfort complaints in the upstairs meeting rooms, is the huge stack effect that is being created by the large attic vent fan in the new building attic. This fan was not installed with proper make up air which should be coming directly from outside. Instead two hatches are being kept open at the attic knee wall into the mech loft, and then down from the mech loft into the floor below. This airflow pathway is causing an enormous amount of conditioned air to move up through the space and out the building. Also because the plans were not followed, and an air barrier was not installed against the bottom of the trusses in those attic spaces, this fan airflow is also rendering all the insulation in these spaces as essentially useless.
- Any leakage points found in the attic plane. Should been done in conjunction with the flat attic insulation upgrade detailed in the envelope section.
- Windows and Doors. Check gaskets, weatherstrips and sweeps. Replace worn items.
- Engineered penetrations for mechanical systems need to have their motorized dampers and backdraft dampers checked to ensure they are sealing as well as can be expected when not in use. These devices tend to fail over time due to corrosions, pests, etc. and often go totally unnoticed.

## 2. Building Envelope Components

Because a major gut-rehab is unlikely, proposals for envelope upgrades have been kept to non-invasive variety. This means that some existing assemblies that are uninsulated, poorly insulated, or compromised by major thermal bridges have not been recommended and model for upgrades. These include the slab and basement walls which are uninsulated, the old building above grade walls which show low R-value on IR inspections, and the above grade walls of the new building which show the typical extreme thermal bridges of metal studs on IR. The windows have also not been recommended for upgrade as their performance and operating condition is not yet poor enough to justify what is an extremely costly upgrade, particularly for older historic type buildings.

However the proposed model does include the following envelope upgrades. Exact details of existing and proposed components can be found in the specifications reports.

- Floor over the sallyport is uninsulated, should be filled with blown insulation product.
- Cathedral ceiling areas at mech lofts should be corrected with minimum R-21 batts, currently many sections are falling out, which very quickly destroys the R-value of the overall assembly. Rafter depth is available for at least R-25 batts if not even R-30. As much insulation as possible should be installed in these areas. Spray foam would not be recommended unless it was accompanied by a cohesive strategy to ensure correct moisture flows through the building.

- Attic knee-walls in the new building mech loft are again barely functional as they are not enclosed on all 6 sides. This combined with the airflow from attic ventilation fan renders their actual R-value as very little. A sealed air barrier should be installed on the backside of both knee-walls, because the walls are metal framed, this air barrier should be a layer of rigid foam to also stop the thermal bridging occurring here. 2" R-10 XPS has been modeled.
- The flat attic ceilings below the upstairs meeting rooms in the new building are compromised because the gypsum layer and insulation were not installed in alignment as they are drawn on the plans. The multi foot air gap between the gypsum ceiling and the fiberglass batts stapled to the trusses, plus the areas of falling and missing batts, makes this control layer totally ineffective. With the attic fan running the energy loss through this assembly is huge. The batts should be removed, and these entire areas should be blown with deep insulation, R-60 has been modeled.

## 3. Domestic Hot Water

#### Existing Conditions (also see Equipment Schedule table)

50 Gallon storage, 0.91 EF electric resistance water heater is a very inefficient unit in general, but especially to be used in a centralized recirculating system like Solebury has, and one that is controlled via simple temperature feedback. Given the use type of the building, the hot water demands are likely quite low, and in reality the vast majority of energy being used by this system is being lost as standby losses at the recirculation controller keeps the entire building loop at temperature despite what are likely infrequent and brief hot water calls.

#### Solebury Domestic Hot Water Scope of Work

In the proposed model we have included two systems changes. First we have replaced this inefficient electric resistance unit with a heat pump hot water unit. For sure this change will in reality require some engineering planning, but it is very achievable to install given the building characteristics. A 3.5 COP model has been included. Second we have replaced the simple temperature controller for the recirculation loop which are known to waste large amounts of energy, with a demand based controller. An example of the product would be the AutoHot line from Enovative. These are relatively inexpensive and easy to install systems which use flow sensors to operate the system only when there is actual demand for hot water AND the circulation loop temperature has cooled below target levels.

## 4. Exhaust Fans

#### Existing Conditions (also see Equipment Schedule table)

The building has various exhaust fans installed to ventilate bathrooms and other areas. There is also the aforementioned large attic ventilation fan. On the day of airflow testing, none of the bathroom ventilation fans, or those meant to ventilate spaces like the copy room were functioning. These fans do not appear to be user actuated, but instead are likely meant to be continuous run during operational hours. It was confirmed EAM's inspection was taking place during operational hours, and so obviously something is not functioning correctly with the controls for that system.

#### Solebury Exhaust Fans Scope of Work

The exhaust fan control system needs to be investigated and corrected. On the day of our inspection at least the building does not have code required ventilation flows in spaces such as the public and private restrooms.

Assuming the exhaust systems are controlled by the building automation system, and were not simply shut down or malfunctioning for some other reason, the other critical item is that their usage schedules need to be set correctly. Ventilation does not need to be occurring during off hours, this wastes electricity directly of course, but often even more costly is the impact this has on the building heating and cooling systems which must condition all the makeup air that infiltrates the building in balance with the exhaust outflows. The proposed model has been done conservatively with exhaust systems running 300 days per year for 12 hours per day. Lower usage schedules are likely achievable but building occupants are best able to make those decisions.

Finally as mentioned also in the air leakage section, the large attic vent fan needs to have a makeup air pathway installed that comes from outside, and does not pull air from inside the building envelope.

## 5. HVAC Systems & Equipment

#### Existing Conditions (also see Equipment Schedule table)

Central heating boiler and central cooling chiller units are quite new and efficient in terms of nameplate values. There is no reason to expect replacing them any time soon given the large investment made in them.

Hot water/chilled water fan coil units are of much older installation, and can be considered outdated at this point in time due to components such as their single speed PSC fan motors.

Existing room thermostats, ventilation controllers, and humidistats are of older type which are terrible opaque to the occupants in terms of their function.

Sample duct leakage testing was found to be on the high side at ~25-30% of total system airflow. Workmanship of the sheet metal assembly of exposed ducts that could be viewed did appear good however, and so the systems could be a good candidate for aerosolized duct sealing, however this has not been included in the proposed modeling because it would need to be ascertained if the ductwork could be sectioned off from the fan coils and OA systems during this process so those components wouldn't be damaged by the aerosol sealant.

Outdoor air ventilation systems are of energy recovery type which is certainly good, however during EAM's inspection it was found that all these systems were shut off, and likely had been for some time. This was found when township staff contacted the monitoring company for us so that we could ask for certain OA dampers to be shut to allow us to complete some sample duct leakage testing. It turned out that the systems had been shut down likely some months before, and not just recently in response to the wildfire event which was lowering outdoor air quality badly at the time of inspection.

This question of how well the building HVAC systems are being monitored and maintained came into sharper focus as our testing proceeded. As details in our findings of air flows and supply/return temperature readings on the marked up mechanical plans, it seems clear that the control systems on all the zones are not working properly. This testing was done on a late June day in the 80's with high humidity, and yet we could not get many of the zones to actuate cooling. Despite overriding the zone control thermostats to tell the system the zone was occupied, and turning the thermostats to well below the room temperatures, the supply register air was clearly only being recirculated over warm coils. These zones had supply air temps in the high 70's to low 80's, while other clearly functional zones were at the correct levels in the low to mid 50's. So either the feedback controllers or the zone dampers or some other components are not working on all the zones. The central heat/AC plants are obviously working, but the buildings comfort levels are limping along with some zones compensating for others over time as air eventually circulates, but the system is not designed to work this way, and temperatures not end up well above and below setpoints across the building just to keep people roughly comfortable.

#### Solebury HVAC Systems & Equipment Scope of Work

Due to the above issues the foremost recommendation for the HVAC scope is to have the monitoring contractor do a thorough check of these systems to ensure proper function. This building has HVAC systems which are fairly atypical for a building of this size class. It's a small facility to have central boiler and chiller plant systems. Very often when these sorts of systems are used, they are in much larger facilities which have permanent staff on hand to monitor operations. Now there were probably reasons these types of systems were used at Solebury, and there is no reason they can't work very well, but its important for the township staff to understand exactly what the HVAC monitoring contract is including, and even more importantly what it doesn't. There could be a misunderstanding in the level of service that the township is paying for, or perhaps the township is paying for some services that it isn't

currently receiving. The major point is that central systems of this type need to be checked on by professionals on a fairly regular basis, especially as they age. So again we would recommend starting with a top to bottom review of each system to make sure fans are operating, hot water/chilled water zone valves are opening when controls systems call, outdoor air dampers on the ERV systems are open and closing as per schedule or CO2 monitoring demand, etc. Basic functioning tests of air flows and temperatures go a long way.

Outdoor air ventilation is designed obviously to provide fresh air during occupancy. The township should review these typical occupancy levels and schedules to ensure that the building is not being over ventilated during times when it is not in use, or when only very lightly occupied. As with the exhaust fans there are large energy penalties for this. The proposed model calls for fresh air ventilation only days per week with 12 hours per day at the design rated airflows, and 12 hours per days at 50% of the design rated airflows. Again depending on the real occupancy counts and typical schedules, even these numbers may be high given the amount of CFMs the installed systems are designed to move.

The building occupants need better room/zone control systems. Ones they can understand how to use, and ones which show occupants how the system is operating at that time to control temperature, humidity, and indoor air quality. The current controls would be more typical of those used in a larger facility being monitored on site by HVAC trained facilities management. Even we had to read a manual to figure out how to hold down certain buttons for certain lengths of time to see certain light flash patterns which told us we had put that zone into occupant override. We will not make any specific recommendations here, because any new controls will need to work with existing building automation system, and we do not know the specifics of that current system, but suffice to say there are multitudes of HVAC controllers out there which can combine the functions of the all the different current controls are so opaque is probably the major reasons why certain zones not functioning correctly has gone uncorrected, we won't say unnoticed because the comfort complaints certainly indicate otherwise.

Flow hood air flow testing was found to be good in general, however some rooms are quite out of balance when it come to supply and return volumes. The marked up mechanical plans should be a good for future balancing efforts. The as-built plans show what are clearly design airflows, and not as test airflows. These airflows are often extremely high given the space sizes and characteristics which would affect the heating/cooling load calcs. This is fairly common in commercial buildings as defaults in commercial load calc software can often generate loads which are much higher than will exist in reality. For this reason and because they are nearing end of useful life, the township should consider a project to replace the zone fan coil units with newer ECM models with variable speed air handlers. These units would be both more efficient on energy, and also better able to cope with humidity removal by running at lower air flow settings for longer periods which his needed for proper moisture removal. The very large airflows seen in some of these smaller office spaces will very quickly satisfy thermostat setpoints, at least when the chiller water zone coil is working properly to deliver 50-55 degree supply air.

Finally the circulation pumps on boiler and chiller water loops are all of inefficient standard types. As these are fairly high horsepower motors, especially the chiller loop, they could seriously benefit from

being replaced with VFD (variable frequency drive) units which can reduce energy consumption by  $\sim$ 50% by ramping down to lower flow levels based on the demand. These have been modeled in the proposed after energy model.

## 6. Lighting

## Existing Conditions (also see Lighting Schedule table and wattage calcs)

Field inspection found many different types of fixtures installed with Incandescent/CFL/LED bulbs in the building. In general, the lighting represents a good area of potential improvement as the calculated installed wattage per square foot is 1.2.

## Solebury Lighting Scope of Work

In order to improve energy efficiency and to allow for easier tenant/site manager maintenance it is recommended to replace the existing fixtures with iLEDs. These will use fewer watts, have longer lifetimes, and will consolidate the variety of fixtures and bulbs in use down to a more manageable set.

With modern LED fixtures and bulbs it is easily attainable to reach the 0.5 watts/sqft we have included in the proposed model. Even lower figures can be achieved while retaining, if not improving on the quality and quality of the light, as well as taking the opportunity to design lighting intensities which are appropriate to the different work and use space types in the building.